Abstract:
An apparatus, referred to as a light bath, is disposed in a beamline ion implantation system and is used to photoionize particles in the ion beam into positively charged particles. Once positively charged, these particles can be manipulated by the various components in the beamline ion implantation system. In certain embodiments, a positively biased electrode is disposed downstream from the light bath to repel the formerly non-positively charged particles away from the workpiece. In certain embodiments, the light bath is disposed within an existing component in the beamline ion implantation system, such as a deceleration stage or a Vertical Electrostatic Energy Filter. The light source emits light at a wavelength sufficiently short so as to ionize the non-positively charged particles. In certain embodiments, the wavelength is less than 250 nm.
Abstract:
A novel composition, system and method for improving beam current during boron ion implantation are provided. In a preferred aspect, the boron ion implant process involves utilizing B2H6, 11BF3 and H2 at specific ranges of concentrations. The B2H6 is selected to have an ionization cross-section higher than that of the BF3 at an operating arc voltage of an ion source utilized during generation and implantation of active hydrogen ions species. The hydrogen allows higher levels of B2H6 to be introduced into the BF3 without reduction in F ion scavenging. The active boron ions produce an improved beam current characterized by maintaining or increasing the beam current level without incurring degradation of the ion source when compared to a beam current generated from conventional boron precursor materials.
Abstract:
An apparatus and method for the creation of negative ion beams is disclosed. The apparatus includes an RF ion source, having an extraction aperture. An antenna disposed proximate a dielectric window is energized by a pulsed RF power supply. While the RF power supply is actuated, a plasma containing primarily positive ions and electrons is created. When the RF power supply is deactivated, the plasma transforms into an ion-ion plasma. Negative ions may be extracted from the RF ion source while the RF power supply is deactivated. These negative ions, in the form of a negative ribbon ion beam, may be directed toward a workpiece at a specific incident angle. Further, both a positive ion beam and a negative ion beam may be extracted from the same ion source by pulsing the bias power supply multiple times each period.
Abstract:
A plasma chamber having improved controllability of the ion density of the extracted ribbon ion beam is disclosed. A plurality of pairs of RF biased electrodes is disposed on opposite sides of the extraction aperture in a plasma chamber. In some embodiments, one of each pair of RF biased electrodes is biased at the extraction voltage, while the other of each pair is coupled to a RF bias power supply, which provides a RF voltage having a DC component and an AC component. In another embodiment, both of the electrodes in each pair are coupled to a RF biased power supply. A blocker may be disposed in the plasma chamber near the extraction aperture. In some embodiments, RF biased electrodes are disposed on the blocker.
Abstract:
An anode layer ion source includes a magnetic field generating member, an upper cathode electrode, a lower cathode electrode, a case member, and an anode electrode. The magnetic field generating member generates a magnetic field. The upper cathode electrode and the lower cathode respectively have two end members and form an opening there between. The two end members are two ends of the opening and guide the magnetic field to the opening, and the magnetic field in the openings is substantially parallel to the connection of two ends of the opening. The case member, the upper cathode electrode, and the lower cathode electrode form an accommodating cavity. The anode electrode is disposed in the accommodating cavity and generates an electric field to the opening. The electric field in the opening is substantially perpendicular to the magnetic field in the opening.
Abstract:
A plasma ion source includes: a gas introduction chamber, into which raw gas is introduced; a plasma generation chamber connected to the gas introduction chamber and made of a dielectric material; a coil wound along an outer circumference of the plasma generation chamber and to which high-frequency power is applied; an envelope surrounding the gas introduction chamber, the plasma generation chamber and the coil; and insulating liquid filled inside the gas introduction chamber, the plasma generation chamber and the envelope to immerse the coil and having an dielectric strength voltage relatively greater than that of the envelope and the same dielectric dissipation factor as the plasma generation chamber.
Abstract:
A fast magnet switching method and apparatus used to rapidly redirect cations, such as H+ or C6+, in a beam path, such as during or between treatment of individual volumes or voxels of a tumor of the patient, is described. Switching means include rapidly increasing or decreasing applied current to a coil about a magnet, which rapidly alters a magnetic field crossing the charged particle path and redirects a charged particle beam away from the patient, such as to a charged particle beam stop. Means to rapidly induce the current change include: (1) using a separate high voltage power supply and/or (2) opening a switch to redirect current through a resistor. In both cases, the rapid current change to the coil yields a rapid change the magnetic field and a corresponding rapid change in direction of the charged particles in the charged particle cancer therapy system.
Abstract:
A cluster source is used to assist charged particle beam processing. For example, a protective layer is applied using a cluster source and a precursor gas. The large mass of the cluster and the low energy per atom or molecule in the cluster restricts damage to within a few nanometers of the surface. Fullerenes or clusters of fullerenes, bismuth, gold or Xe can be used with a precursor gas to deposit material onto a surface, or can be used with an etchant gas to etch the surface. Clusters can also be used to deposit material directly onto the surface to form a protective layer for charged particle beam processing or to provide energy to activate an etchant gas.
Abstract:
An inductively coupled plasma ion source for a focused ion beam (FIB) system is disclosed, comprising an insulating plasma chamber with a feed gas delivery system, a compact radio frequency (RF) antenna coil positioned concentric to the plasma chamber and in proximity to, or in contact with, the outer diameter of the plasma chamber. In some embodiments, the plasma chamber is surrounded by a Faraday shield to prevent capacitive coupling between the RF voltage on the antenna and the plasma within the plasma chamber. High dielectric strength insulating tubing is heat shrunk onto the outer diameter of the conductive tubing or wire used to form the antenna to allow close packing of turns within the antenna coil. The insulating tubing is capable of standing off the RF voltage differences between different portions of the antenna, and between the antenna and the Faraday shield.
Abstract:
A plasma ion source including a plasma chamber, gas inlets, an RF antenna, an RF window, an extraction plate, a window shield, and a chamber liner. The RF window may be positioned intermediate the RF antenna and the plasma chamber. The window shield may be disposed intermediate the RF widow and the interior of the plasma chamber and the chamber liner may cover the interior surface of the plasma chamber. During operation of the ion source, the window shield sustains ionic bombardment that would otherwise be sustained by the RF window. Fewer impurity ions are therefore released into the plasma chamber. Simultaneously, additional dopant atoms are released from the window shield into the plasma chamber. Ionic bombardment is also sustained by the chamber liner, which also contributes a quantity of dopant atoms to the plasma chamber. Dopant ion production within the plasma chamber is thereby increased while impurities are minimized.