Abstract:
To make it possible to prevent disconnection of the wiring on a driving multilayer flexible circuit board when folding the board, to reliably fold the circuit board, to improve the assemblability and the reliability or a backlight member, and to improve the noise resistance in a clip-chip-type liquid crystal display device using the circuit board, one end of a flexible substrate FPC2 is connected to an end of one transparent glass substrate SUB1 constituting a liquid crystal display element, the intermediate portion of the flexible substrate FPC2 is folded nearby the outside of an end side of the substrate SUB1, the other end of the substrate FPC2 is arranged at the lower side of an end of the substrate SUB1, and an end of a film BFI of the flexible substrate FPC2 is formed into a waved pattern along the folding line.
Abstract:
A liquid crystal display device. The liquid crystal display device has a peripheral circuit including a liquid crystal display having drive ICs COG-packaged on a transparent substrate, and a foldable multi-layered flexible substrate having two or more conductor layers, so that the compact packaging can be realized to reduce EMI noise and the number of parts. The liquid crystal display device may also include a display controller having two or more display control integrated circuit elements packaged therein, and drive ICs mounted by a chip-on-glass packaging on two sides of a liquid crystal display panel, usually, on the longer sides, so that the display controller excellent in the temperature resistance and advantageous in compact and a video signal line driving circuit board are uniformly arranged at the upper and lower sides of a screen. As a result, the vertical positioning of the screen can be made proper to take an advantage in the compact packaging. Further, the liquid crystal display device may have a peripheral circuit board positioned in an outer periphery of a seal port recessed to avoid the projection of the seal port and in which a fluorescent tube has its two lamp cables arranged around four sides of a liquid crystal display element, so that the substrate at the seal port side and the lamp cable of a side light type back light can be compactly packaged.
Abstract:
An electrical contact (150) in a housing (110) is created by forming an opening (112) in a wall of the housing. A circuit assembly (130) situated inside the housing (110) has a conductive member (140) that is formed to be of substantially the same shape as the opening (112) in the housing. A portion (150) of the conductive member (140) fits into the opening (112) and a second portion is adhesive bonded to the circuit assembly (130). The electrical interconnection (145) between the conductive member (140) and a copper circuit pattern (134) on the circuit assembly (130) is made by creating a hole or via (145) through the conductive member down to the copper circuit pattern and plating copper (147) into the hole or filling the hole with conductive polymers. A battery package (100) is made by adding additional electrical components to the circuit assembly (130) and connecting a plurality of cells (120) to the circuit assembly.
Abstract:
An electrical connector (20) includes a body (22) having cavities (24) adapted to receive the leads (18) of components such as displays (16) to be interconnected by circuit traces (28) carried on a film (26) on the surface of the body with contact arms (34, 36) formed in the trace material to engage the leads extended therethrough into the cavities (24) and provide an electrical and mechanical connection of the component.
Abstract:
A connector system for coupling electrical cables with electrical apparatus such as integrated circuits and printed circuit boards. The present invention discloses a connector system for coupling electrical cables, preferably high density flexible circuits, with electrical apparatus. The connection system discloses a stiffener plate having a slot therein cut at a 45 degree angle from one corner of the stiffener plate to a second distal point of the stiffener plate. A pair of flexible circuits may be disposed in the stiffener plate and bent at 90 degree angles to the plate for coupling to a surface of the stiffener plate. The flexible circuits are of a design allowing for placement of electrical conductive pads along four edges of the stiffener plate, thus maximizing the density of electrical connections in the connection system.
Abstract:
An electric miniature component in which the body of the component is contacted by means of a flexible, electrically insulating foil supporting conductor tracks with connection zones, in which the foil is adhered around a U-shaped supporting member in such manner that the connection zones of the conductor tracks surround the connection sides of the limbs of the Uprofile.
Abstract:
A spliced display panel and a spliced display device are provided. At least two display panels are spliced to form a gap. The light-emitting diode substrate is disposed between two adjacent display panels. The first supporting portion of the light-emitting diode substrate is disposed on one of the display panels, and the second supporting portion of the light-emitting diode substrate is disposed on another one of the display panels. The carry portion is disposed on the first supporting portion and the second supporting portion to shield the gap.
Abstract:
A die package structure and a method for fabricating the same are provided. The method includes: fixing a first die on a package base; aligning first hollow pads of a flexible printed circuit board with first pads of the first die, and fixing the flexible printed circuit board; soldering the first hollow pads to the first pads; fixing a second die on the flexible printed circuit board to overlap with the first die; folding the flexible printed circuit board, such that second hollow pads of the flexible printed circuit board are aligned with second pads of the second die, and signal test pads of the flexible printed circuit board are exposed; fixing the flexible printed circuit board on the second die; soldering the second hollow pads to the second pads; soldering metal wires to the signal test soldering pads; and soldering package pins to the metal wires.
Abstract:
A display device includes a first substrate including a display area and a non-display area, which is on the periphery of the display area, a light-emitting element disposed on the first substrate and in the display area, a display signal line which is disposed on the first substrate and in the display area, extends in a first direction, and transmits a signal to the light-emitting element, a common voltage supply line disposed on the first substrate and in the non-display area, a pad disposed on the first substrate and in the non-display area, and electrically connected to the display signal line, and an indentation pad disposed on the first substrate and in the non-display area, and electrically connected to the common voltage supply line, where the indentation pad is disposed closer than the pad to edges of the first substrate in a second direction, which intersects the first direction.