摘要:
A trench semiconductor power device integrated with four types of ESD clamp diodes for optimization of total perimeter of the ESD clamp diodes, wherein the ESD clamp diodes comprise multiple back to back Zener diodes with alternating doped regions of a first conductivity type next to a second conductivity type, wherein each of the doped regions has a closed ring structure.
摘要:
A super-junction semiconductor substrate is configured in such a manner that an n-type semiconductor layer of a parallel pn structure is opposed to a boundary region between an active area and a peripheral breakdown-resistant structure area. A high-concentration region is formed at the center between p-type semiconductor layers that are located on both sides of the above n-type semiconductor layer. A region where a source electrode is in contact with a channel layer is formed over the n-type semiconductor layer. A portion where the high-concentration region is in contact with the channel layer functions as a diode. The breakdown voltage of the diode is set lower than that of the device.
摘要:
A semiconductor device includes a first-conductivity-type semiconductor layer including an active region in which a transistor having impurity regions is formed and a marginal region surrounding the active region, a second-conductivity-type channel layer formed between the active region and the marginal region and forming a front surface of the semiconductor layer, at least one gate trench formed in the active region to extend from the front surface of the semiconductor layer through the channel layer, a gate insulation film formed on an inner surface of the gate trench, a gate electrode formed inside the gate insulation film in the gate trench, and at least one isolation trench arranged between the active region and the marginal region to surround the active region and extending from the front surface of the semiconductor layer through the channel layer, the isolation trench having a depth equal to that of the gate trench.
摘要:
A super-junction semiconductor substrate is configured in such a manner that an n-type semiconductor layer of a parallel pn structure is opposed to a boundary region between an active area and a peripheral breakdown-resistant structure area. A high-concentration region is formed at the center between p-type semiconductor layers that are located on both sides of the above n-type semiconductor layer. A region where a source electrode is in contact with a channel layer is formed over the n-type semiconductor layer. A portion where the high-concentration region is in contact with the channel layer functions as a diode. The breakdown voltage of the diode is set lower than that of the device.
摘要:
In a power MISFET having a trench gate structure with a dummy gate electrode, a technique is provided for improving the performance of the power MISFET, while preventing electrostatic breakdown of a gate insulating film therein. A power MISFET having a trench gate structure with a dummy gate electrode, and a protective diode are formed on the same semiconductor substrate. The protective diode is provided between a source electrode and a gate interconnection. In a manufacturing method of such a semiconductor device, a polycrystalline silicon film for the dummy gate electrode and a polycrystalline silicon film for the protective diode are formed simultaneously. A source region of the power MISFET and an n+-type semiconductor region of the protective diode are formed in the same step.
摘要:
A semiconductor element includes a drain layer, a drift region selectively provided in the drain layer, a base region selectively provided in the drift region, a source region selectively provided in the base region, first and/or second metal layers selectively provided in at least one of the source region and the drain layer from the front surface to the inside of at least one of the source region and the drain layer, a gate electrode in a trench shape extending in a direction substantially parallel to the front surface of the drain layer from a part of the source region through the base region adjacent to at least the part of the source region to a part of the drift region, a source electrode connected to the first metal layer, and a drain electrode connected to the drain layer or the second metal layer.
摘要:
Provided is a semiconductor device capable of suppressing deterioration in characteristics even when an Avalanche phenomenon occurs in the semiconductor device. The semiconductor device includes a first conductive type drift region; a second conductive type body region disposed on a front surface side of the drift region; a gate trench penetrating the body region and extending to the drift region; a gate electrode disposed within the gate trench; an insulator disposed between the gate electrode and a wall surface of the gate trench; and a second conductive type diffusion region surrounding a bottom portion of the gate trench. An impurity concentration and dimension of the diffusion region are adjusted such that a breakdown is to occur at a p-n junction between the diffusion region and the drift region when an Avalanche phenomenon is occurring.
摘要:
Provided is a semiconductor device in which on-resistance is largely reduced. In a region (2a) of an N type epitaxial layer (2) of the semiconductor device 20, each region between neighboring trenches (3) is blocked with a depletion layer (14) formed around a trench (3) so that a current passage (12) is interrupted, while a part of the depletion layer (14) formed around the trench (3) is deleted so that the current passage (12) is opened. In a region (2b), a junction portion (8) between the N type epitaxial layer (2) and a P+ type diffusion region (7) makes a Zener diode (8).
摘要:
In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
摘要:
A transistor power switch device comprising an array of vertical transistor elements for carrying current between first and second faces of a semiconductor body. The device also comprises a semiconductor monitor element comprising first and second semiconductor monitor regions in the semiconductor body and a monitor conductive layer distinct from the current carrying conductive layer of the transistor array. The semiconductor monitor element presents semiconductor properties representative of the transistor array. Characteristics of the semiconductor monitor element are measured as representative of characteristics of the transistor array. Source metal ageing of a transistor power switch device is monitored by measuring and recording a parameter which is a function of a sheet resistance of the monitor conductive layer when the transistor power switch device is new and comparing it with its value after operation of the device. A measured current is applied between a first location on an elongate strip element of the monitor conductive layer and a first location on one of a pair of lateral extensions of the strip, and the corresponding voltage developed between a second location on the elongate strip element and the other of said pair of lateral extensions is measured.