Abstract:
A method for forming field effect transistors comprises forming a first dummy gate stack over a first fin, forming a second dummy gate stack over a second fin, depositing a first layer of spacer material on the first dummy gate stack, the first fin, the second dummy gate stack, and the second fin, patterning a first masking layer on the first dummy gate stack and the first fin, etching to remove portions of the first layer of spacer material and form a spacer adjacent to the second dummy gate stack, removing the first masking layer, epitaxially growing a silicon material on the second fin, depositing a layer of oxide material on the first layer of spacer material, the first epitaxial material and the second dummy gate stack, and depositing a second layer of spacer material on the layer of oxide material.
Abstract:
One method disclosed includes, among other things, forming an overall fin structure having a stepped cross-sectional profile, the fin structure having an upper part and a lower part positioned under the upper part, wherein the upper part has a first width and the lower part has a second width that is less than the first width, forming a layer of insulating material in trenches adjacent the overall fin structure such that the upper part of the overall fin structure and a portion of the lower part of the overall fin structure are exposed above an upper surface of the layer of insulating material, and forming a gate structure around the exposed upper part of the overall fin structure and the exposed portion of the lower part of the overall fin structure.
Abstract:
One example of a novel integrated circuit product disclosed herein includes, among other things, a lateral FinFET device comprising a first gate structure having a first upper surface positioned above a semiconductor substrate and a vertical FinFET device comprising a second gate structure having a second upper surface positioned above the semiconductor substrate, wherein the first upper surface of the first gate structure is positioned at a first height level above a reference surface of the semiconductor substrate and the second upper surface of the second gate structure is positioned at a second height level above the reference surface of the semiconductor substrate, the first height level being greater than the second height level.
Abstract:
One method disclosed includes, among other things, forming a gate structure above an active region of a semiconductor substrate, performing an epitaxial deposition process to form an epi semiconductor material on the active region in the source/drain region of the device, performing an etching process on the epi semiconductor material to remove a portion of the epi semiconductor material so as to define at least one epi recess in the epi semiconductor material, forming a metal silicide layer on the upper surface of the epi semiconductor material and in the at least one epi recess in the epi semiconductor material, and forming a conductive structure that is conductively coupled to the metal silicide layer.
Abstract:
A method of forming a semiconductor device that includes forming a plurality of semiconductor pillars. A dielectric spacer is formed between at least one set of adjacent semiconductor pillars. Semiconductor material is epitaxially formed on sidewalls of the adjacent semiconductor pillars, wherein the dielectric spacer obstructs a first portion of epitaxial semiconductor material formed on a first semiconductor pillar from merging with a second portion of epitaxial semiconductor material formed on a second semiconductor pillar.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
A method includes forming a plurality of fins above a substrate, forming at least one dielectric material above and between the plurality of fins, and forming a mask layer above the dielectric material. The mask layer has an opening defined therein. At least one etching process is performed to remove a portion of the at least one dielectric material exposed by the opening so as to expose a top surface portion and sidewall surface portions of at least one fin in the plurality of fins. The at least one dielectric material remains above the substrate adjacent the at least one fin. An etching process is performed to remove the at least one fin.
Abstract:
Methods and interconnect structures for circuit structure transistors are provided. The methods include, for instance: providing one or more fins above a substrate, and an insulating material over the fin(s) and the substrate; providing barrier structures extending into the insulating material, the barrier structures being disposed along opposing sides of the fin(s); exposing a portion of the fin(s) and the barrier structures; and forming an interconnect structure extending over the fin(s), the barrier structures confining the interconnect structure to a defined dimension transverse to the fin(s). Exposing the portion of the fin(s) and barrier structures may include isotropically etching the insulating material with an etchant that selectively etches the insulating material without affecting a barrier material of the barrier structures.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a multi-layer patterned masking layer comprised of first and second layers of material and first and second openings that extend through both of the first and second layers of material, wherein the first opening is positioned above a first area of the substrate where the DDB isolation structure will be formed and the second opening is positioned above a second area of the substrate where the SDB isolation structure will be formed. The method also includes performing a first process operation through the first opening to form the DDB isolation structure, performing a second process operation to remove the second layer of material and to expose the first opening in the first layer of material, and performing a third process operation through the second opening to form the SDB isolation structure.
Abstract:
A method of filling trenches between gates includes forming a first and a second dummy gate over a substrate, the first and second dummy gates including a sacrificial gate material and a hard mask layer; forming a first gate spacer along a sidewall of the first dummy gate and a second gate spacer along a sidewall of the second dummy gate; performing an epitaxial growth process to form a source/drain on the substrate between the first and second dummy gates; disposing a conformal liner over the first and second dummy gates and the source/drain; disposing an oxide on the conformal liner between the first and second dummy gates; recessing the oxide to a level below the hard mask layers of the first and second dummy gates to form a recessed oxide; and depositing a spacer material over the recessed oxide between the first dummy gate and the second dummy gate.