Abstract:
Uniform fin recessing for the situation of recessing nonadjacent fins and the situation of recessing adjacent fins includes providing a starting semiconductor structure, the structure including a semiconductor substrate, multiple fins coupled to the substrate, each fin having a hard mask layer thereover and being surrounded by isolation material. The hard mask layer is then removed over some of the fins, at least partially removing the some of the raised structures, the at least partially removing creating openings, and filling the openings with an optical planarization layer (OPL) material.
Abstract:
A semiconductor device includes a source/drain region, a gate structure, a gate cap layer positioned above the gate structure and a sidewall spacer positioned adjacent to opposite sides of the gate structure. A first epi semiconductor material is positioned in the source/drain region, the first epi semiconductor material having a first lateral width at an upper surface thereof. A second epi semiconductor material is positioned on the first epi semiconductor material, the second epi semiconductor material extending laterally over and covering at least a portion of an uppermost end of the sidewall spacer and having a second lateral width at an upper surface thereof that is greater than the first lateral width. A metal silicide region is positioned on the upper surface of the second epi semiconductor material.
Abstract:
One illustrative device disclosed herein includes, among other things, a semiconductor substrate, a fin structure, a gate structure positioned around a portion of the fin structure in the channel region of the device, spaced-apart portions of a second semiconductor material positioned vertically between the fin structure and the substrate, wherein the second semiconductor material is a different semiconductor material than that of the fin, and a local channel isolation material positioned laterally between the spaced-apart portions of the second semiconductor material and vertically below the fin structure and the gate structure, wherein the local channel isolation material is positioned under at least a portion of the channel region of the device.
Abstract:
A method that involves forming a high-k gate insulation layer, a work-function adjusting metal layer and a metal protection layer in first and second replacement gate cavities, wherein the metal protection layer is formed so as to pinch-off the first gate cavity while leaving the second gate cavity partially un-filled, forming a first bulk conductive metal layer in the un-filled portion of the second gate cavity, removing substantially all of the metal protection layer in the first gate cavity while leaving a portion of the metal protection layer in the second gate cavity, forming a second conductive metal layer within the first and second replacement gate cavities, recessing the conductive metal layers so as to define first and second gate-cap cavities in the first and second replacement gate cavities, respectively, and forming gate cap layers within the first and second gate-cap cavities.
Abstract:
One method disclosed includes, among other things, forming a structure comprised of an island of a first insulating material positioned between the gate structures above the source/drain region and under a masking layer feature of a patterned masking layer, forming a liner layer that contacts the island of insulating material and the masking layer feature, selectively removing the masking layer feature to thereby form an initial opening that is defined by the liner layer, performing at least one isotropic etching process through the initial opening to remove the island of first insulating material and thereby define a contact opening that exposes the source/drain region, and forming a conductive contact structure in the contact opening that is conductively coupled to the source/drain region.
Abstract:
A method of forming a semiconductor structure includes forming a gate structure having a first conductive material above a semiconductor substrate, gate spacers on opposing sides of the first conductive material, and a first interlevel dielectric (ILD) layer surrounding the gate spacers and the first conductive material. An upper portion of the first conductive material is recessed. The gate spacers are recessed until a height of the gate spacers is less than a height of the gate structure. An isolation liner is deposited above the gate spacers and the first conductive material. A portion of the isolation liner is removed so that a top surface of the first conductive material is exposed. A second conductive material is deposited in a contact hole created above the first conductive material and the gate spacers to form a gate contact.
Abstract:
One method disclosed herein includes, among other things, forming a gate cap layer above a recessed final gate structure and above recessed sidewall spacers, forming a recessed trench silicide region that is conductively coupled to the first source/drain region, the recessed trench silicide region having an upper surface that is positioned at a level that is below the recessed upper surface of the sidewall spacers, forming a combined contact opening in at least one layer of material that exposes a conductive portion of the recessed final gate structure and a portion of the trench silicide region, and forming a combined gate and source/drain contact structure in the combined contact opening.
Abstract:
A transistor device includes a gate structure positioned above a semiconductor substrate and spaced-apart sidewall spacers positioned above the substrate and adjacent sidewalls of the gate structure, wherein an internal sidewall surface of each of the spaced-apart sidewall spacers has a stepped cross-sectional configuration
Abstract:
One method disclosed includes performing a selective etching process through a gate cavity to selectively remove a portion of a first semiconductor material relative to a second layer of a second semiconductor material and a substrate so as to thereby define a space between the second semiconducting material and the substrate, filling substantially all of the space with an insulating material so as to thereby define a substantially self-aligned channel isolation region positioned under at least what will become the channel region of the FinFET device.
Abstract:
Dummy gates are removed from a pre-metal layer to produce a first opening (with a first length) and a second opening (with a second length longer than the first length). Work function metal for a metal gate electrode is provided in the first and second openings. Tungsten is deposited to fill the first opening and conformally line the second opening, thus leaving a third opening. The thickness of the tungsten layer substantially equals the length of the first opening. The third opening is filled with an insulating material. The tungsten is then recessed in both the first and second openings using a dry etch to substantially a same depth from a top surface of the pre-metal layer to complete the metal gate electrode. Openings left following the recess operation are then filled with a dielectric material forming a cap on the gate stack which includes the metal gate electrode.