Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
Abstract:
Disclosed is a coating composition and coated film having the coating composition adhered thereto in which the coating composition comprises particulate filler; binder composition comprising acrylic polymer and ethylene acrylic acid copolymers; non-cross-linking adhesion promoter; and optionally urethane polymer, styrene-acrylic copolymer, or a combination thereof; and wherein cross-linker(s) are substantially absent from the composition; and wherein the coated film has a 45° Gloss (ASTM D2457) of less than 30 or 25 or 20 or 15. The coated film is useful for pressure sensitive labels for thermal transfer ribbon printing labels.
Abstract:
Methods and systems for cleaning, coating and sealing leaks in existing pipes, in a single operation. A piping system can be cleaned in one pass by dry particulates forced and pulled by air throughout the piping system by a generator and a vacuum. Pipes can be protected from water corrosion, erosion and electrolysis, extending the life of pipes such as copper, steel, lead, brass, cast iron piping and composite materials. Coatings can be applied to pipes having diameters up to approximately 6″. Leak sealants of at least approximately 4 mils thick can cover insides of pipes, and can include novel mixtures of fillers and epoxy materials, and viscosity levels. A positive pressure can be maintained within the pipes during applications. Piping systems can be returned to service within approximately 96 hours.
Abstract:
A method for providing a matrix material between a bonded pair of substrates with a homogeneous distribution of anisotropic filler particles is provided. Functionalized anisotropic filler particles are mixed uniformly with a matrix material to form a homogenous mixture. A bonded assembly of a first substrate and a second substrate with an array of electrical interconnect structures is placed within a vacuum environment. The homogenous mixture of the matrix material and the anisotropic filler particles is dispensed around the array of electrical interconnect structures. A gas is abruptly introduced into the vacuum environment to induce an implosion of the homogenous mixture. The implosion causes the homogenous mixture to fill the cavity between the first and second substrates without causing agglomeration of the anisotropic filler particles. The mixture filling the space between the first and second substrates has a homogenous distribution of the anisotropic filler particles.
Abstract:
A method for providing a matrix material between a bonded pair of substrates with a homogeneous distribution of anisotropic filler particles is provided. Functionalized anisotropic filler particles are mixed uniformly with a matrix material to form a homogenous mixture. A bonded assembly of a first substrate and a second substrate with an array of electrical interconnect structures is placed within a vacuum environment. The homogenous mixture of the matrix material and the anisotropic filler particles is dispensed around the array of electrical interconnect structures. A gas is abruptly introduced into the vacuum environment to induce an implosion of the homogenous mixture. The implosion causes the homogenous mixture to fill the cavity between the first and second substrates without causing agglomeration of the anisotropic filler particles. The mixture filling the space between the first and second substrates has a homogenous distribution of the anisotropic filler particles.
Abstract:
A stent with at least one severable supporting device and methods of coating using the same are disclosed. The severable supporting device can be an end tube or a tab attached to some portion of the stent by at least one “gate” or attachment. The end tube or tab may be part of the design of the stent when it is originally manufactured, or it may be attached to the stent in a secondary process by a biocompatible glue or solder. The end tube or tab can be used to support a stent during a coating process eliminating the need for a mandrel which would otherwise contact the stent during the coating process.
Abstract:
Methods and systems for cleaning, coating and sealing leaks in existing pipes, in a single operation. A piping system can be cleaned in one pass by dry particulates forced and pulled by air throughout the piping system by a generator and a vacuum. Pipes can be protected from water corrosion, erosion and electrolysis, extending the life of pipes such as copper, steel, lead, brass, cast iron piping and composite materials. Coatings can be applied to pipes having diameters up to approximately 6″. Leak sealants of at least approximately 4 mils thick can cover insides of pipes, and can include novel mixtures of fillers and epoxy materials, and viscosity levels. A positive pressure can be maintained within the pipes during applications. Piping systems can be returned to service within approximately 96 hours.
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1−z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, (B)或由通式(2)表示的羧酸(B))的化合物(A-1-z))O 3 [其中0.9
Abstract:
Methods for treating various substrates to impart unique and artistic finishes thereto, comprising the application of a plurality of separate pigmented curable liquid compositions thereto. In some embodiments the pigmented curable liquid compositions are applied in such fashion to preclude formation of a homogeneous pigmented mixture. In some embodiments this is achieved by applying a second pigmented curable liquid composition over a first pigmented curable liquid composition prior to the full cure of the former. In other embodiments, this is achieved by simultaneous application of two pigmented curable liquid compositions which are non-homogeneous.
Abstract:
A stent with at least one severable supporting device and methods of coating using the same are disclosed. The severable supporting device can be an end tube or a tab attached to some portion of the stent by at least one “gate” or attachment. The end tube or tab may be part of the design of the stent when it is originally manufactured, or it may be attached to the stent in a secondary process by a biocompatible glue or solder. The end tube or tab can be used to support a stent during a coating process eliminating the need for a mandrel which would otherwise contact the stent during the coating process.