Abstract:
An improved finFET and method of fabrication is disclosed. Embodiments of the present invention take advantage of the different epitaxial growth rates of {110} and {100} silicon. Fins are formed that have {110} silicon on the fin tops and {100} silicon on the long fin sides (sidewalls). The lateral epitaxial growth rate is faster than the vertical epitaxial growth rate. The resulting merged fins have a reduced merged region in the vertical dimension, which reduces parasitic capacitance. Other fins are formed with {110} silicon on the fin tops and also {110} silicon on the long fin sides. These fins have a slower epitaxial growth rate than the {100} side fins, and remain unmerged in a semiconductor integrated circuit, such as an SRAM circuit.
Abstract:
A method and structure for forming a field effect transistor with reduced contact resistance are provided. The reduced contact resistance is manifested by a reduced metal semiconductor alloy contact resistance and a reduced conductively filled via contact-to-metal semiconductor alloy contact resistance. The reduced contact resistance is achieved in this disclosure by texturing the surface of the transistor's source region and/or the transistor's drain region. Typically, both the source region and the drain region are textured in the present disclosure. The textured source region and/or the textured drain region have an increased area as compared to a conventional transistor that includes a flat source region and/or a flat drain region. A metal semiconductor alloy, e.g., a silicide, is formed on the textured surface of the source region and/or the textured surface of the drain region. A conductively filled via contact is formed atop the metal semiconductor alloy.
Abstract:
An electrical circuit, planar diode, and method of forming a diode and one or more CMOS devices on the same chip. The method includes electrically isolating a portion of a substrate in a diode region from other substrate regions. The method also includes recessing the substrate in the diode region. The method further includes epitaxially forming in the diode region a first doped layer above the substrate and epitaxially forming in the diode region a second doped layer above the first doped layer.
Abstract:
Embodiments of the present invention may include methods of incorporating an embedded etch barrier layer into the replacement metal gate layer of field effect transistors (FETs) having replacement metal gates, as well as the structure formed thereby. The embedded etch stop layer may be composed of embedded dopant atoms and may be formed using ion implantation. The embedded etch stop layer may make the removal of replacement metal gate layers easier and more controllable, providing horizontal surfaces and determined depths to serve as the base for gate cap formation. The gate cap may insulate the gate from adjacent self-aligned electrical contacts.
Abstract:
A method for fabricating a semiconductor device comprises forming a nanowire on an insulator layer at a surface of a substrate; forming a dummy gate over a portion of the nanowire and a portion of the insulator layer; forming recesses in the insulator layer on opposing sides of the dummy gate; forming spacers on opposing sides of the dummy gate; forming source regions and drain regions in the recesses in the insulator layer on opposing sides of the dummy gate; depositing an interlayer dielectric on the source regions and the drain regions; removing the dummy gate to form a trench; removing the insulator layer under the nanowire such that a width of the trench underneath the nanowire is equal to or less than a distance between the spacers; and forming a replacement gate in the trench.
Abstract:
A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
Abstract:
Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
Abstract:
A method for fabricating a semiconductor device comprises forming a nanowire on an insulator layer at a surface of a substrate; forming a dummy gate over a portion of the nanowire and a portion of the insulator layer; forming recesses in the insulator layer on opposing sides of the dummy gate; forming spacers on opposing sides of the dummy gate; forming source regions and drain regions in the recesses in the insulator layer on opposing sides of the dummy gate; depositing an interlayer dielectric on the source regions and the drain regions; removing the dummy gate to form a trench; removing the insulator layer under the nanowire such that a width of the trench underneath the nanowire is equal to or less than a distance between the spacers; and forming a replacement gate in the trench.
Abstract:
A semiconductor fin suspended above a top surface of a semiconductor layer and supported by a gate structure is formed. An insulator layer is formed between the top surface of the semiconductor layer and the gate structure. A gate spacer is formed, and physically exposed portions of the semiconductor fin are removed by an anisotropic etch. Subsequently, physically exposed portions of the insulator layer can be etched with a taper. Alternately, a disposable spacer can be formed prior to an anisotropic etch of the insulator layer. The lateral distance between two openings in the dielectric layer across the gate structure is greater than the lateral distance between outer sidewalls of the gate spacers. Selective deposition of a semiconductor material can be performed to form raised active regions.
Abstract:
The present disclosure generally provides for an integrated circuit (IC) structure with a bulk silicon finFET and methods of forming the same. An IC structure according to the present disclosure can include: a bulk substrate; a finFET located on a first region of the bulk substrate; and a layered dummy structure located on a second region of the bulk substrate, wherein the layered dummy structure includes a first crystalline semiconductive layer, a second crystalline semiconductive layer positioned on the first crystalline semiconductive layer, wherein the first crystalline semiconductive layer comprises a material distinct from the second crystalline semiconductive layer, and a third crystalline semiconductive layer positioned on the second crystalline semiconductive layer, wherein the third crystalline semiconductive layer comprises the material distinct from the second crystalline semiconductive layer.