Abstract:
Techniques for effectively confining n-well dopants during fabrication of relaxed SiGe on SRB devices are provided. In one aspect, a method for forming a semiconductor device includes the steps of: forming a SiGe stress relief buffer layer on a substrate; growing a bottom confinement layer on the stress relief buffer layer; growing a SiGe layer on the bottom confinement layer; growing a top confinement layer on the SiGe layer; forming STI regions extending through the top confinement layer, through the SiGe layer, and at least down to the bottom confinement layer, wherein the STI regions define at least one active area in the SiGe layer; and implanting at least one well dopant into the at least one active area which is confined to the at least one active area by the top confinement layer, the bottom confinement layer, and the STI regions. A semiconductor device is also provided.
Abstract:
A method for manufacturing a semiconductor device comprises depositing alternating layers of a plurality of first dielectric layers and a plurality of second dielectric layers on a substrate in a stacked configuration, forming one or more first openings in the stacked configuration to a depth penetrating below an upper surface of a bottom second dielectric layer of the plurality of second dielectric layers, forming one or more second openings in the stacked configuration to a depth corresponding to an upper surface of the substrate or below an upper surface of the substrate, removing the plurality of second dielectric layers from the stacked configuration to form a plurality of gaps, and epitaxially growing a semiconductor material from a seed layer in the one or more second openings to fill the one or more first and second openings and the plurality of gaps, wherein defects caused by a lattice mismatch between the epitaxially grown semiconductor material and a material of the substrate are contained at a bottom portion of the one or more second openings.
Abstract:
A structure includes a substrate and a tunnel field effect transistor (TFET). The TFET includes a source region disposed in the substrate having an overlying source contact, the source region containing first semiconductor material having a first doping type; a drain region disposed in the substrate having an overlying drain contact, the drain region containing second semiconductor material having a second, opposite doping type; and a gate structure that overlies a channel region between the source and the drain. The source region and the drain region are asymmetric with respect to one another such that one contains a larger volume of semiconductor material than the other one. A method is disclosed to fabricate a plurality of the TFETs using a plurality of spaced apart mandrels having spacers. A pair of the mandrels and the associated spacers is processed to form four adjacent TFETs without requiring intervening lithographic processes.
Abstract:
A method for manufacturing a semiconductor device comprises epitaxially growing a plurality of silicon layers and compressively strained silicon germanium (SiGe) layers on a substrate in a stacked configuration, wherein the silicon layers and compressively strained SiGe layers are alternately stacked on each other starting with a silicon layer on a bottom of the stacked configuration, patterning the stacked configuration to a first width, selectively removing a portion of each of the silicon layers in the stacked configuration to reduce the silicon layers to a second width less than the first width, forming an oxide layer on the compressively strained SiGe layers of the stacked configuration, wherein forming the oxide layer comprises fully oxidizing the silicon layers so that portions of the oxide layer are formed in place of each fully oxidized silicon layer, and removing part of the oxide layer while maintaining at least part of the portions of the oxide layer formed in place of each fully oxidized silicon layer, wherein the compressively strained SiGe layers are anchored to one another and a compressive strain is maintained in each of the compressively strained SiGe layers.
Abstract:
A method includes forming a set of fins composed of a first semiconductor material. The method further heats the set of fins to condense the fins and cause growth of a layer of oxide on vertical sidewalls thereof, masking a first sub-set of the fins, forming a plurality of voids in the oxide by removing a second sub-set of fins, where each void has a three-dimensional shape and dimensions that correspond to a three dimensional shape and dimensions of a corresponding removed fin from the second sub-set, and epitaxially growing in the voids a third sub-set of fins. The third sub-set of fins is composed of a second semiconductor material that differs from the first semiconductor material. Each fin of the third subset has a three dimensional shape and dimensions of a corresponding removed fin from the second sub-set. At least one structure formed by the method is also disclosed.
Abstract:
A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
Abstract:
In one example, a field effect transistor includes a pair of fins positioned in a spaced apart relation. Each of the fins includes germanium. Source and drain regions are formed on opposite ends of the pair of fins and include silicon. A gate is wrapped around the pair of fins, between the source and drain regions.
Abstract:
A field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the IC. Fins on pedestals are defined, e.g., with a hard mask, in a fin layer on a semiconductor wafer and spaces between the pedestals are filled with dielectric material, e.g., shallow trench isolation (STI). Sacrificial sidewalls are forming along the sides of fins and pedestal sub-fins sidewalls are re-exposed. Pedestal sub-fins are doped with a punch-though dopant and punch-though dopant is diffused into the sub-fins and the bottoms of fins. After removing the hard mask and sacrificial sidewalls, metal FET gates are formed on the fins.
Abstract:
A semiconductor structure and method for fabricating such. The semiconductor structure includes a monolithic substrate, a first dielectric layer carried by the monolithic substrate and a second dielectric layer carried by the monolithic substrate. The first dielectric layer has a first Young's modulus, and the second dielectric layer has a second Young's modulus. The first Young's modulus is at least twice the second Young's modulus. A compressive SiGe layer is positioned over and in contact with the first dielectric layer. A relaxed SiGe layer is positioned over and in contact with the second dielectric layer. The relaxed SiGe layer is spaced apart from the compressive SiGe layer.
Abstract:
A semiconductor structure containing a vertical transistor having air gap spacers located above and below each functional gate structure is provided. Notably, a bottom air gap spacer is located between a bottommost surface of first and second functional gate structures and a topmost surface of a bottom source/drain region, and a top air gap spacer is located between a topmost surface of the first and second functional gate structures and a surface of the top source/drain region.