Abstract:
Provided is a process for producing a pressure-sensitive adhesive sheet by laminating layers of active-energy-ray-curable compositions and irradiating the laminate with an active energy ray. The processes gives a pressure-sensitive adhesive sheet with less defects at low production cost and is applicable to the production of pressure-sensitive adhesive sheets of various kinds. The process includes: Steps A1 and A2 of applying an active-energy-ray-curable composition to one surface of a first carrier and to one surface of a second carrier using a die coater to form coated layers thereon; Step B of placing the resulting first and second carriers so that the coating-layer-side surfaces of the carriers face each other, and introducing an active-energy-ray-curable composition into between the first and second carriers; and Step C of irradiating a multilayer assemblage with an active energy ray, the multilayer assemblage obtained in Step B and including the active-energy-ray-curable compositions between the first and second carriers.
Abstract:
A dicing/die-bonding film including a pressure-sensitive adhesive layer (2) on a supporting base material (1) and a die-bonding adhesive layer (3) on the pressure-sensitive adhesive layer (2), wherein a releasability in an interface between the pressure-sensitive adhesive layer (2) and the die-bonding adhesive layer (3) is different between an interface (A) corresponding to a work-attaching region (3a) in the die-bonding adhesive layer (3) and an interface (B) corresponding to a part or a whole of the other region (3b), and the releasability of the interface (A) is higher than the releasability of the interface (B). The dicing/die-bonding film is excellent in balance between retention in dicing a work and releasability in releasing its diced chipped work together with the die-bonding adhesive layer.
Abstract:
The present invention aims to provide a tape for holding a chip that makes pasting and peeling of a chip-shaped workpiece easy. It is a tape for holding a chip having a configuration in which a pressure-sensitive adhesive layer is formed on a base material, wherein the pressure-sensitive adhesive layer has a chip-shaped workpiece pasting region onto which a chip-shaped workpiece is pasted and a frame pasting region onto which a mount frame is pasted, and that is used by pasting the mount frame to the frame pasting region, wherein the 180-degree peeling adhesive power of the pressure-sensitive adhesive layer to a silicon mirror wafer at the frame pasting region is 5 times or more the 180-degree peeling adhesive power of the pressure-sensitive adhesive layer to a silicon mirror wafer at the chip-shaped workpiece pasting region.
Abstract:
The present invention relates to a semiconductor device manufacturing film roll, comprising a winding core in a cylindrical form, and a semiconductor device manufacturing film which is wound around the winding core into a roll form, wherein the diameter of the winding core is from 7.5 to 15.5 cm.
Abstract:
A wafer-processing tape, having a removable adhesive layer (2), and an adhesive layer (3), formed on a substrate film (1), wherein the tape is used in a process involving the steps of: grinding a back face of a wafer circuit substrate (5) having convex-type metal electrodes (4), and dicing the wafer circuit substrate into chips, in a state that the tape is adhered to the wafer circuit substrate; and picking up the chips, in which the chips are picked up in a state that the adhesive layer (3) is peeled from the substrate film (1) but is bonded to the individual chip.
Abstract:
A reusable body decoration includes a decorative member, a multilayer adhesive adhered to one side of the decorative member, the multilayer adhesive having a first layer having a relatively low peel strength for removably contacting a user's skin and a second layer having a relatively high peel strength for contacting one side of the decorative member, the first and second layer being laminated.
Abstract:
There are provided an adhesive for connecting a circuit to be interposed between substrates having circuit electrodes thereon opposed to each other and to electrically connect the circuit electrodes on the substrates opposed to each other to the pressurizing direction under pressure, wherein the adhesive contains a compound having an acid equivalent of 5 to 500 KOH mg/g, and an adhesive for connecting a circuit to be interposed between substrates having circuit electrodes opposed to each other and to electrically connect the electrodes on the substrate opposed to each other to the pressurizing direction under pressure, wherein the adhesive comprises a first adhesive layer and a second adhesive layer, and a glass transition temperature of the first adhesive layer after pressure connection is higher than the glass transition temperature of the second adhesive layer after pressure connection.
Abstract:
A patternable adhesive film is formed in a double-layered structure of an adhesive layer having patternability and an adhesive layer having both adhesion and developability. Thus, the double-layered patternable adhesive film can effectively have both patternability and adhesion.
Abstract:
A multilayer anisotropic conductive adhesive a plurality of adhesive layers that are laminated, each of which contains an insulating resin and a hardening agent. The conductive particles are contained either in a first plurality of adhesive layers or in a second plurality of adhesive layers, and at least the top or bottom adhesive layer has the DSC (differential scanning calorimetry) exothermic peak temperature of 130° C. or more and 180° C. or less. Also, a connection structure is constructed in which a first electronic component having an electrode and an insulating film on the surface thereof and a second electronic component that has an electrode on the surface thereof are electrically connected through the multilayer anisotropic conductive adhesive.
Abstract:
Provided is such a pressure-sensitive adhesive tape as described below, which is capable of protecting the uneven surface of a member having unevenness on its surface. The pressure-sensitive adhesive tape brings together sufficient pressure-sensitive adhesiveness for, and sufficient releasability from, the member. In addition, even upon deformation of the member protected with the pressure-sensitive adhesive tape by, for example, lamination or continuous winding, the uneven shape does not deform and a base material layer in the pressure-sensitive adhesive tape is not damaged. Also provided is a pressure-sensitive adhesive tape useful as such a surface protective film for a prism sheet as described below, which is capable of effectively protecting, for example, a lens surface of a prism sheet having multiple triangle pole-shaped prisms fixed on its surface. The surface protective film brings together sufficient pressure-sensitive adhesiveness for, and sufficient releasability from, the prism sheet. In addition, when the prism sheet protected with the surface protective film is brought into a state such as a laminated state or a continuously wound state, the emergence of irregularity (indentation) in the external appearance of the prism sheet to which the surface protective film is attached can be suppressed. A pressure-sensitive adhesive tape of the present invention is a pressure-sensitive adhesive tape including a base material layer, a first pressure-sensitive adhesive layer, and a second pressure-sensitive adhesive layer in the stated order, in which: the base material layer contains a thermoplastic resin; the storage modulus of the first pressure-sensitive adhesive layer is higher than the storage modulus of the second pressure-sensitive adhesive layer; and a difference between the storage modulus of the first pressure-sensitive adhesive layer at a frequency of 10 Hz and 23° C., and the storage modulus of the second pressure-sensitive adhesive layer at a frequency of 10 Hz and 23° C. is 3×105 Pa or more.