Abstract:
A method of manufacturing a light emitting device having a plurality of nano-light emitting structures is provided. The method comprises depositing a first conductivity-type semiconductor material on a substrate to form a base layer. A mask having a plurality of openings is formed on the base layer. The first conductivity-type nitride semiconductor material is deposited in the openings of the mask to form a plurality of nanocores having a main portion bounded by the mask and an exposed tip portion. A current blocking layer is deposited on the tip portion of the nanocores. A portion of the mask is removed to expose the main portion of the nanocore. An active material layer is deposited on the plurality of nanocores. A second conductivity-type nitride semiconductor layer is deposited on the active material layer.
Abstract:
A variable resistive memory device includes an array of a plurality of memory cells. Each of the plurality of memory cells includes first and second electrodes, and an SbmSen material layer (where m and n are positive numbers, respectively) interposed between the first electrode and the second electrode. The SbmSen material layer includes a separation structure in which a plurality of Sb atoms are in contact with a plurality of Se atoms.
Abstract:
A semiconductor device includes a plurality of lower electrodes on a substrate, with each of the lower electrodes extending in a height direction from the substrate and including sidewalls, the lower electrodes being spaced apart from each other in a first direction and in a second direction, a plurality of first supporting layer patterns contacting the sidewalls of the lower electrodes, the first supporting layer patterns extending in the first direction between ones of the lower electrodes adjacent in the second direction, a plurality of second supporting layer patterns contacting the sidewalls of the lower electrodes, the second supporting layer pattern extending in the second direction between ones of the lower electrodes adjacent in the first direction, the plurality of second supporting layer patterns being spaced apart from the plurality of first supporting layer patterns in the height direction.
Abstract:
A method of providing a photolithography pattern can be provided by identifying at least one weak feature from among a plurality of features included in a photolithography pattern based on a feature parameter that is compared to a predetermined identification threshold value for the feature parameter. A first region of the weak feature can be classified as a first dosage region and a second region of the weak feature can be classified as a second dosage region. Related methods and apparatus are also disclosed.
Abstract:
Disclosed are a nitride semiconductor light-emitting element and a method for manufacturing the same. The nitride semiconductor light-emitting element according to the present invention comprises: a current blocking part disposed between a substrate and an n-type nitride layer; an activation layer disposed on the top surface of the n-type nitride layer; and a p-type nitride layer disposed on the top surface of the activation layer, wherein the current blocking part is an AlxGa(1-x)N layer, and the Al content x times layer thickness (μm) is in the range of 0.01-0.06. Accordingly, the nitride semiconductor light-emitting element can increase the luminous efficiency by having a current blocking part which prevents current leakage from occurring.
Abstract translation:公开了一种氮化物半导体发光元件及其制造方法。 根据本发明的氮化物半导体发光元件包括:设置在衬底和n型氮化物层之间的电流阻挡部分; 激活层,设置在所述n型氮化物层的顶表面上; 以及设置在活化层顶表面上的p型氮化物层,其中电流阻挡部分是Al x Ga(1-x)N层,并且Al含量x倍层厚度(μm)在0.01的范围内 -0.06。 因此,氮化物半导体发光元件可以通过具有防止电流泄漏发生的电流阻挡部来提高发光效率。
Abstract:
An organic light emitting diode (OLED) lighting apparatus includes a light emitting panel including an organic light emitting diode, a housing for housing the light emitting panel, a cover coupled to the housing and covering a front-side edge of the light emitting panel, a plurality of pins disposed between the housing and the light emitting panel and supporting an edge of the light emitting panel, and at least one contact bar disposed between the plurality of pins and a back-side edge of the light emitting panel.
Abstract:
A method and apparatus for identifying a neighboring device are provided. The method of identifying a neighboring device, which is performed in a user terminal, includes: obtaining identification information and location information of a plurality of neighboring devices that can wirelessly communicate with the user terminal; extracting the identification information of one of the neighboring devices, the neighboring device being in the actual location range within the field of vision of the user terminal; and using the extracted identification information to request that the neighboring device perform wireless communication with the user terminal. According to the method and apparatus, identification information of a neighboring device with which a user terminal desires to perform wireless communication can be obtained using a viewfinder or liquid crystal display of the user terminal.
Abstract:
The present invention relates to a process for preparation of aripiprazole crystal form II by recrystallizing aripiprazole in a mixture of acetone and 1-methoxy-2-propanol or a single solvent of 1-methoxy-2-propanol. The simple process according to the present invention can produce aripiprazole crystal form II with high purity and high yield in a mass scale.
Abstract:
Polymerized material on a substrate may be removed by exposure to vacuum ultraviolet (VUV) radiation from an energy source within a gaseous atmosphere of a controlled composition. Following such removal, additional etching techniques are also described for nano-imprinting.
Abstract:
The present application relates to extracellular vesicles (EVs) derived from gram-positive bacteria. In detail, the present application provides animal models of disease using extracellular vesicles derived from gram-positive bacteria, provides a method for screening an active candidate substance which is capable of preventing or treating diseases through the animal models of disease, provides vaccines for preventing or treating diseases caused by extracellular vesicles derived from gram-positive bacteria, and provides a method for diagnosing the causative factors of diseases caused by gram-positive bacteria using extracellular vesicles.