Abstract:
A semiconductor device includes a semiconductor substrate, a gate structure formed over the semiconductor substrate, and an epitaxial structure formed partially within the semiconductor substrate. A vertically extending portion of the epitaxial structure extends vertically above a top surface of the semiconductor substrate in an area adjacent the gate structure. A laterally extending portion of the epitaxial structure extends laterally at an area below the top surface of the semiconductor substrate in a direction toward an area below the gate structure and beyond an area where the epitaxial structure extends vertically. The device further includes an interlayer dielectric layer between a side surface of the vertically extending portion of the epitaxial structure and a side surface of the gate structure. A top surface of the laterally extending portion of the epitaxial structure directly contacts the interlayer dielectric layer.
Abstract:
A fin structure for a semiconductor device, such as a FinFET structure, has first and second semiconductor layers and an air gap between the layers. The air gap may prevent current leakage. A FinFET device may be manufactured by first recessing and then epitaxially re-growing a source/drain fin, with the regrowth starting over a tubular air gap.
Abstract:
The invention provides a method of epitaxial structure formation in a semiconductor, comprising: providing a substrate; performing a dry etch to form a first recess; after performing the dry etch, performing a SPM cleaning process on the substrate by using a nozzle spraying SPM solution with an angle greater than zero and less than 45 degrees relative to the substrate; after performing the SPM cleaning process, performing a wet etch to form a second recess; after performing the wet etch, performing a pre-epi cleaning process; and growing an epitaxial structure in the second recess.
Abstract:
The present invention provides a fin-shaped field effect transistor (FinFET), comprises: a substrate having a fin structure; a plurality trenches formed on the fin structure with an alloy grown in the trenches; a gate structure on the fin structure perpendicular to an extending direction of the fin structure in-between the plurality of trenches; and an amorphous layer on a surface of the fin structure exposed by the gate structure and disposed in-between the gate structure and the alloy. The invention also provides a manufacturing method of a fin-shaped field effect transistor (FinFET).
Abstract:
A high-voltage FinFET device having LDMOS structure and a method for manufacturing the same are provided. The high-voltage FinFET device includes: at least one fin structure, a working gate, a shallow trench isolation structure, and a first dummy gate. The fin structure includes a first-type well region and a second-type well region adjacent to the first-type well region, and further includes a first part and a second part. A trench is disposed between the first part and the second part and disposed in the first-type well region. A drain doped layer is disposed on the first part which is disposed in the first-type well region, and a source doped layer is disposed on the second part which is disposed in the second-type well region. The working gate is disposed on the fin structure which is disposed in the first-type well region and in the second-type well region.
Abstract:
A semiconductor device with reinforced gate spacers and a method of fabricating the same. The semiconductor device includes low-k dielectric gate spacers adjacent to a gate structure. A high-k dielectric material is disposed over an upper surface of the low-k dielectric gate spacers to prevent unnecessary contact between the gate structure and a self-aligned contact structure. The high-k dielectric material may be disposed, if desired, over an upper surface of the gate structure to provide additional isolation of the gate structure from the self-aligned contact structure.
Abstract:
A metal-insulator-metal (MIM) capacitor structure and a method for manufacturing the same. The method includes a step hereinafter. A 5-layered dual-dielectric structure is provided on a substrate. The 5-layered dual-dielectric structure includes a bottom metal layer, a first dielectric layer, an intermediate metal layer, a second dielectric layer and a top metal layer in order. The first dielectric layer and the second dielectric layer have different thicknesses.
Abstract:
A method for manufacturing a non-volatile memory with SONOS memory cells, which includes steps of: providing a substrate; forming a first gate oxide layer and a first gate conductive layer onto the substrate; forming a MOS transistor gate by executing a photolithography process on the first gate conductive layer, and then forming an ONO structure on the substrate; and forming a second gate conductive layer on the ONO substrate, and then forming a NVM transistor gate by executing a photolithography process on the second gate conductive layer.
Abstract:
The present invention provides a transistor comprising a substrate having a surface; a first deep well region in the substrate; a second deep well region in the substrate, isolated from and encircling the first deep well region; a first well region in the substrate and on the first deep well region; two second well regions in the second deep well region and respectively at two opposite sides of the first well region; a source region in the first well region and adjacent to the surface; two drain regions in the two second well regions respectively and adjacent to the surface; two gate structures on the surface, wherein each of the two gate structures is between the source region and one of the drain regions respectively; and a guard ring in the substrate encircling the second deep well region, and on the periphery of the transistor.
Abstract:
A method for manufacturing a semiconductor device is provided. The method comprises steps as follows. At least one trench is provided in a low-k dielectric layer on a substrate. The trench is filled with a copper (Cu) film. Pure cobalt (Co) is deposited on a surface of the Cu film by introducing a flow of a carrier gas carrying a Co-containing precursor and a reducing agent onto the surface of the Cu film. The flowrate of the flow is within a range from 5 to 19 sccm.