Abstract:
Aspects of embodiments of the invention relate to a simulator including a visual display capable of outputting to a user a display one or more effects of a command series selected and a system including a droplet microactuator electronically coupled to and controlled by a processor capable of executing instructions, the droplet microactuator including a substrate comprising electrodes for conducting droplet operations. Further aspects of embodiments of the invention relate to a droplet operations troubleshooting apparatus. Other aspects of embodiments of the invention relate to a computer implemented method of displaying simulated microactuator droplets.
Abstract:
Aspects of embodiments of the invention relate to a simulator including a visual display capable of outputting to a user a display one or more effects of a command series selected and a system including a droplet microactuator electronically coupled to and controlled by a processor capable of executing instructions, the droplet microactuator including a substrate comprising electrodes for conducting droplet operations. Further aspects of embodiments of the invention relate to a droplet operations troubleshooting apparatus. Other aspects of embodiments of the invention relate to a computer implemented method of displaying simulated microactuator droplets.
Abstract:
Sample processing droplet actuators, systems and methods are provided. According to one embodiment, a stamping device including a droplet microactuator is provided and includes: (a) a first plate including a path or network of control electrodes for transporting droplets on a surface thereof; (b) a second plate mounted in a substantially parallel orientation with respect to the first plate providing an interior volume between the plates, the second plate including one or more stamping ports for transporting some portion or all of a droplet from the interior volume to an exterior location; (c) a port for introducing fluid into the interior volume between the plates; and (d) a path or network of reference electrodes corresponding to the path or network of control electrodes. Associated systems and methods including the stamping device are also provided.
Abstract:
Methods are provided for separating magnetically responsive beads from a droplet in a droplet actuator. Droplet operations electrodes and a magnet are arranged in a droplet actuator to manipulate a bead-containing droplet and position it relative to a magnetic field region that attracts the magnetically responsive beads. The droplet operations electrodes are operated to control the droplet shape and transport it away from the magnetic field region to form a concentration of beads in the droplet. The continued transport of the droplet away from the magnetic field causes the concentration of beads to break away from the droplet to yield a small, concentrated bead-containing droplet immobilized by the magnet.
Abstract:
A droplet actuator with a droplet formation electrode configuration associated with a droplet operations surface, wherein the electrode configuration may include one or more electrodes configured to control volume of a droplet during formation of a sub-droplet on the droplet operations surface. Methods of making and using the droplet actuator are also provided.
Abstract:
The present invention relates to droplet-based particle sorting. According to one embodiment, a droplet microactuator is provided and includes: (a) a suspension of particles; and (b) electrodes arranged for conducting droplet operations using droplets comprising particles. A method of transporting a particle is also provided, wherein the method includes providing a droplet comprising the particle and transporting the droplet on a droplet microactuator.
Abstract:
The invention provides a method of redistributing magnetically responsive beads in a droplet. The method may include conducting on a droplet operations surface one or more droplet operations using the droplet without removing the magnetically responsive beads from the region of the magnetic field. The droplet operations may in some cases be electrode-mediated. The droplet operations may redistribute and/or circulate the magnetically responsive beads within the droplet. In some cases, the droplet may include a sample droplet may include a target analyte. The redistributing of the magnetically responsive beads may cause target analyte to bind to the magnetically responsive beads. In some cases, the droplet may include unbound substances in a wash buffer. The redistributing of the magnetically responsive beads causes unbound substances to be freed from interstices of an aggregated set or subset of the magnetically responsive beads.
Abstract:
The present invention relates to droplet-based particle sorting. According to one embodiment, a method of providing a droplet comprising a single cell is provided, wherein the method includes providing a droplet comprising a suspension of cells on an electrowetting droplet actuator surrounded by an oil medium, dispensing from the droplet to provide a dispensed droplet, determining whether the dispensed droplet on the electrowetting droplet actuator comprises a single cell, and sorting the dispensed droplet on the electrowetting droplet actuator based on the results of the determining step using electrowetting-mediated droplet operations.
Abstract:
The present invention relates to bead incubating and washing on a droplet actuator. Methods for incubating magnetically responsive beads that are labeled with primary antibody, a sample (i.e., analyte), and secondary reporter antibodies on a magnet, on and off a magnet, and completely off a magnet are provided. Also provided are methods for washing magnetically responsive beads using shape-assisted merging of droplets. Also provided are methods for shape-mediated splitting, transporting, and dispensing of a sample droplet that contains magnetically responsive beads. The apparatuses and methods of the invention provide for rapid time to result and optimum detection of an analyte in an immunoassay.
Abstract:
Methods are provided for separating magnetically responsive beads from a droplet in a droplet actuator. Droplet operations electrodes and a magnet are arranged in a droplet actuator to manipulate a bead-containing droplet and position it relative to a magnetic field region that attracts the magnetically responsive beads. The droplet operations electrodes are operated to control the droplet shape and transport it away from the magnetic field region to form a concentration of beads in the droplet. The continued transport of the droplet away from the magnetic field causes the concentration of beads to break away from the droplet to yield a small, concentrated bead-containing droplet immobilized by the magnet.