摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
A capacitor having a high quality and a manufacturing method of the same are provided.A capacitor has a lower electrode formed on an oxide film, a dielectric layer formed on the lower electrode, an upper electrode formed so as to face the lower electrode with the dielectric layer between, and an upper electrode formed so as to cover the upper electrode, an opening portion of the upper electrode and an opening portion of the dielectric layer. By forming the upper electrode on the dielectric layer, it is possible to pattern the dielectric layer by using the upper electrode as a mask, and provide a capacitor having a high-quality dielectric layer by preventing impurity diffusion into the dielectric layer. By forming the upper electrode on the dielectric layer, it is possible to prevent the dielectric layer from being exposed to etching liquid, liquid developer, etc.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
According to one embodiment, a reticle chuck cleaner for cleaning a reticle chuck of an EUV exposure apparatus includes a substrate having a shape to be carried to the reticle chuck of the EUV exposure apparatus, and an adhesive formed on one of the main surfaces of the substrate.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
In accordance with an increase in speed, a wiring structure has rapidly become more microscopic and thinner and a wiring layer has become extremely thin, and therefore, giving a contact load to a probe for the inspection as has been conventionally done causes damage to a wiring layer and an insulation layer because the probe penetrates not only the oxide film but also the wiring layer or because of a concentration stress from the probe. On the other hand, decreasing the contact load causes unstable continuity between the probe and an electrode pad.It is an object of the present invention to surely and stably inspect an object to be inspected by breaking an oxide film with a low stylus pressure.The present invention is a probe that comes into electrical contact with an object to be inspected when inspecting an electrical characteristic of the object to be inspected, the probe including: a probe main body having a contact portion that comes into contact with the object to be inspected; and a plurality of conductive materials having tip portions projecting from the contact portion of the probe main body.
摘要:
Because a sample holder 100 is composed of a plurality of convex parts 1 provided on a top face of a base substance 2, and the plurality of convex parts 1 are spherical surfaces 1a formed of a single crystal or amorphous material, frictional wear of the sample at contact parts between a sample 4 and the convex parts 1 is reduced, thereby making it possible to inhibit particle generation. Further, because a joining layer 3 is formed of a single crystal or amorphous material, there is no defect that particles scattered on the sample holder 100 fill up it, which makes it possible to easily keep it in a clean state by cleaning, and it is possible to effectively reduce reattachment of particles to the sample 4.
摘要:
There is disclosed a film forming method comprising continuously discharging a solution adjusted so as to spread over a substrate by a given amount to the substrate through a discharge port disposed in a nozzle, moving the nozzle and substrate with respect to each other, and holding the supplied solution onto the substrate to form a liquid film, wherein a distance h between the discharge port of the nozzle and the substrate is set to be not less than 2 mm and to be in a range less than 5×10−5 qγ (mm) given with respect to a surface tension γ (N/m) of the solution, discharge speed q (m/sec) of the solution continuously discharged through the discharge port, and a constant of 5×10−5 (m·sec/N).
摘要:
Provided is a defect inspection apparatus and an inspection (or evaluation) method with highly improved accuracy, which would not be provided by the prior art, in the defect inspection apparatus used in a manufacturing process of a semiconductor device.Provided is a method for inspecting a sample surface with a projection type electron beam inspection apparatus, comprising the steps of: forming such an irradiation area on the sample surface by an electron beam generated from an electron gun 21 that has approximately a circular or elliptical shape of a size larger than a pattern on the sample surface; irradiating the electron beam substantially onto a center of the pattern on the sample surface; and forming an image on an electron detection plane of a detector from secondary electrons emanating from the sample surface in response to the irradiation of the electron beam for inspecting the sample surface.