摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell is disclosed. The platinum layer of the lower electrode is formed such that it adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode.
摘要:
A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
摘要:
Electrical devices containing carbon nanotubes can be passivated to protect the carbon nanotubes from degradation while substantially preserving the carbon nanotubes' electrical conductivity and switching characteristics. Such electrical devices can include a first metal contact, a switching layer containing a plurality of carbon nanotubes disposed on the first metal contact, a passivation layer containing amorphous carbon, a metal carbide, or any combination thereof that is disposed on at least a top surface of the switching layer, and a second metal contact disposed upon the passivation layer. Methods for forming the electrical devices can include disposing a passivation layer containing amorphous carbon on at least a top surface of the switching layer, and optionally heating to at least partially convert the amorphous carbon within the passivation layer into a metal carbide.
摘要:
A two terminal switching device includes a first conductive terminal, a second conductive terminal in spaced relation to the first terminal, the first terminal encompassed by the second terminal. The device also includes an electrically insulating spacer that encompasses the first terminal and provides the spaced relation between the second terminal and the first terminal. It also includes a nanotube article comprising at least one carbon nanotube, the nanotube article being arranged to overlap at least a portion of each of the first and second terminals. The device also includes a stimulus circuit in electrical communication with at least one of the first and second terminals that is capable of applying a first electrical stimulus to at least one of the first and second terminals to change the resistance of the device between the first and second terminals from a relatively low resistance to a relatively high resistance.
摘要:
A method of enhanced atomic layer deposition is described. In an embodiment, the enhancement is the use of plasma. Plasma begins prior to flowing a second precursor into the chamber. The second precursor reacts with a prior precursor to deposit a layer on the substrate. In an embodiment, the layer includes at least one element from each of the first and second precursors. In an embodiment, the layer is TaN. In an embodiment, the precursors are TaF5 and NH3. In an embodiment, the plasma begins during the purge gas flow between the pulse of first precursor and the pulse of second precursor. In an embodiment, the enhancement is thermal energy. In an embodiment, the thermal energy is greater than generally accepted for ALD (>300 degrees Celsius). The enhancement assists the reaction of the precursors to deposit a layer on a substrate.
摘要:
The invention includes atomic layer deposition methods of depositing an oxide on a substrate. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed onto the substrate to form a first species monolayer within the deposition chamber from a gaseous precursor. The chemisorbed first species is contacted with remote plasma oxygen derived at least in part from at least one of O2 and O3 and with remote plasma nitrogen effective to react with the first species to form a monolayer comprising an oxide of a component of the first species monolayer. The chemisorbing and the contacting with remote plasma oxygen and with remote plasma nitrogen are successively repeated effective to form porous oxide on the substrate. Other aspects and implementations are contemplated.
摘要:
A method of forming (and an apparatus for forming) a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more precursor compounds that include niobium and/or vanadium and using an atomic layer deposition process including a plurality of deposition cycles.
摘要:
The invention includes methods of utilizing supercritical fluids to introduce precursors into reaction chambers. In some aspects, a supercritical fluid is utilized to introduce at least one precursor into a chamber during ALD, and in particular aspects the supercritical fluid is utilized to introduce multiple precursors into the reaction chamber during ALD. The invention can be utilized to form any of various materials, including metal-containing materials, such as, for example, metal oxides, metal nitrides, and materials consisting of metal. Metal oxides can be formed by utilizing a supercritical fluid can be utilized to introduce a metal-containing precursor into reaction chamber, with the precursor then forming a metal-containing layer over a surface of a substrate. Subsequently, the metal-containing layer can be reacted with oxygen to convert at least some of the metal within the layer to metal oxide.