Abstract:
Embodiments described herein provide tantalum-based copper barriers and methods for forming such barriers. A dielectric body is provided. A first layer is formed above the dielectric body. The first layer includes tantalum. A second layer is formed above the first layer. The second layer includes manganese. A third layer is formed above the second layer. The third layer includes copper.
Abstract:
Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
Abstract:
Metal-oxide films (e.g., aluminum oxide) with low leakage current suitable for high-k gate dielectrics are deposited by atomic layer deposition (ALD). The purge time after the metal-deposition phase is 5-15 seconds, and the purge time after the oxidation phase is prolonged beyond 60 seconds. Prolonging the post-oxidation purge produced an order-of-magnitude reduction of leakage current in 30 Å-thick Al2O3 films.
Abstract:
Embodiments provided herein describe methods and systems for forming gate dielectrics for field effect transistors. A substrate including a germanium channel and a germanium oxide layer on a surface of the germanium channel is provided. A metallic layer is deposited on the germanium oxide layer. The metallic layer may be nanocrystalline or amorphous. The deposition of the metallic layer causes the germanium oxide layer to be reduced such that a metal oxide layer is formed adjacent to the germanium channel.
Abstract:
Methods and apparatuses for combinatorial processing are disclosed. Methods of the present disclosure providing a substrate, the substrate comprising a plurality of site-isolated regions. Methods include forming a first capping layer on the surface of a first site-isolated region of the substrate. The methods further include forming a second capping layer on the surface of a second site-isolated region of the substrate. In some embodiments, forming the first and second capping layers include exposing the first and second site-isolated regions to a plasma induced with H2 and hydrocarbon gases. In some embodiments, methods include applying at least one subsequent process to each site-isolated region. In addition, methods include evaluating results of the films post processing.
Abstract:
Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
Abstract:
Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
Abstract:
Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
Abstract:
Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
Abstract:
A method for depositing graphene is provided. The method includes depositing a layer of non-conducting amorphous carbon over a surface of a substrate and depositing a transition metal in a pattern over the amorphous carbon. The substrate is annealed at a temperature below 500° C., where the annealing converts the non-conducting amorphous carbon disposed under the transition metal to conducting amorphous carbon. A portion of the pattern of the transition metal is removed from the surface of the substrate to expose the conducting amorphous carbon.