Abstract:
Embodiments of wireless communication devices and method for discontinuous reception (DRX) mode in RRC_IDLE state of wireless communication are generally described herein. Some of these embodiments describe a wireless communication device having processing circuitry arranged to determine to use an extended paging discontinuous reception (DRX) value to increase a paging cycle length. The wireless communication device may transmit a non-access stratum (NAS) message to the network, indicating that the wireless communication device desires to use the extended paging DRX value. The wireless communication device may receive a message from the network that includes an information element (IE) indicating whether the network supports the extended paging DRX value. Other methods and apparatuses are also described.
Abstract:
Embodiments of the present disclosure describe systems and methods for user equipment (UE)-initiated reporting of congestion information. Various embodiments may include systems and methods for reporting congestion information to an evolved node B (eNB) by UEs. In embodiments, the congestion information may be utilized in managing access requests made by the UEs. Other embodiments may be described and/or claimed.
Abstract:
Embodiments describe mechanisms for an eNB, possibly assisted by a UE, to detect and possibly alleviate user plane congestion. In some embodiments, the eNB implements UE assisted packet dropping, where the UE requests the eNB drop packets in a sub-QCI that meet designated criteria, such as exceeding a sub-QCI delay threshold. Other embodiments, detect periods of congestion and send congestion indication to the core network when the congestion period exceeds a threshold or when the user experience is degraded. Some embodiments implement both sets of functionality.
Abstract:
Embodiments of wireless communication devices and method for discontinuous reception (DRX) mode in RRC_IDLE state of wireless communication are generally described herein. Some of these embodiments describe a wireless communication device having processing circuitry arranged to determine to use an extended paging discontinuous reception (DRX) value to increase a paging cycle length. The wireless communication device may transmit a non-access stratum (NAS) message to the network, indicating that the wireless communication device desires to use the extended paging DRX value. The wireless communication device may receive a message from the network that includes an information element (IE) indicating whether the network supports the extended paging DRX value. Other methods and apparatuses are also described.
Abstract:
Discontinuous reception (DRX) alignment techniques for dual-connectivity architectures are described. In one embodiment, for example, user equipment (UE) may comprise one or more radio frequency (RF) transceivers, one or more RF antennas, and logic, at least a portion of which is in hardware, the logic to receive a radio resource control (RRC) configuration information message containing a small cell RRC configuration information element (IE), the small cell RRC configuration IE to contain a small cell discontinuous reception (DRX) configuration IE comprising one or more inter-cell-coordinated small cell DRX parameters, the logic to determine a start time for a small cell DRX cycle based on at least one of the one or more inter-cell-coordinated small cell DRX parameters and initiate the small cell DRX cycle at the determined start time. Other embodiments are described and claimed.
Abstract:
Embodiments of wireless communication devices and method for discontinuous reception (DRX) mode in RRC_IDLE state of wireless communication are generally described herein. Some of these embodiments describe a wireless communication device having processing circuitry arranged to determine to use an extended paging discontinuous reception (DRX) value to increase a paging cycle length. The wireless communication device may transmit a non-access stratum (NAS) message to the network, indicating that the wireless communication device desires to use the extended paging DRX value. The wireless communication device may receive a message from the network that includes an information element (IE) indicating whether the network supports the extended paging DRX value. Other methods and apparatuses are also described.
Abstract:
Embodiments describe mechanisms for an eNB, possibly assisted by a UE, to detect and possibly alleviate user plane congestion. In some embodiments, the eNB implements UE assisted packet dropping, where the UE requests the eNB drop packets in a sub-QCI that meet designated criteria, such as exceeding a sub-QCI delay threshold. Other embodiments, detect periods of congestion and send congestion indication to the core network when the congestion period exceeds a threshold or when the user experience is degraded. Some embodiments implement both sets of functionality.
Abstract:
Technology for reducing packet transmissions is disclosed. A master evolved node B (MeNB) configured for dual connectivity can receive one or more acknowledgements (ACKs) from a user equipment (UE) indicating packets that were successfully received at the UE from a secondary evolved node B (SeNB). The MeNB can receive, from the SeNB, packet delivery information for the SeNB. The MeNB can receive an indication from the SeNB of an air-interface connection loss between the SeNB and the UE. The MeNB can identify remaining packets that were not sent from the SeNB to the UE based, in part, on the ACKs received from the UE and the packet delivery information received from the SeNB, wherein the remaining packets are not sent to the UE due to the connection loss between the SeNB and the UE. The MeNB can send the remaining packets from the MeNB to the UE.
Abstract:
Embodiments of an enhanced Node B (eNB) and method for RRC connection establishment for small-data transfers in a 3GPP LTE network are generally described herein. The eNB may receive a small-data RRC connection request message from user equipment (UE) that may include an establishment clause value indicating small-data traffic either with or without mobility. The eNB may send an initial UE setup request message to inform the mobility management entity (MME) that a small-data RRC connection is being established. The eNB may receive an acceptance message from the MME for the small-data RRC connection which may include a reduction of an RRC inactivity timer for fast connection release. The eNB may send an RRC connection reconfiguration message to the UE in response to receipt of the acceptance to establish the small-data RRC connection, the RRC connection reconfiguration message including a measurement information element (IE) when mobility is to be supported.
Abstract:
Embodiments of an enhanced Node B (eNB) and method for RRC connection establishment for small-data transfers in a 3GPP LTE network are generally described herein. The eNB may receive a small-data RRC connection request message from user equipment (UE) that may include an establishment clause value indicating small-data traffic either with or without mobility. The eNB may send an initial UE setup request message to inform the mobility management entity (MME) that a small-data RRC connection is being established. The eNB may receive an acceptance message from the MME for the small-data RRC connection which may include a reduction of an RRC inactivity timer for fast connection release. The eNB may send an RRC connection reconfiguration message to the UE in response to receipt of the acceptance to establish the small-data RRC connection, the RRC connection reconfiguration message including a measurement information element (IE) when mobility is to be supported.