摘要:
A manufacturing method for a semiconductor device, including the steps of: forming a passivation film that covers a surface of a semiconductor substrate on which electrodes have been formed, in which an opening is formed so as to expose a predetermined electrode from among the electrodes; forming a diffusion prevention plug of a first metal in the vicinity of the opening in the passivation film; supplying a second metal material to the surface of the semiconductor substrate on which the diffusion prevention plug has been formed, so as to form a seed layer of the second metal; forming a resist film that covers the seed layer and in which an opening is formed so as to expose a predetermined region of the seed layer on the diffusion prevention plug; supplying a third metal material into the opening in the resist film so as to form a protrusion electrode of the third metal; removing the resist film after the step of forming a protrusion electrode; and removing the seed layer after the step of forming a protrusion electrode.
摘要:
This invention offers a manufacturing method to reduce a manufacturing cost of a semiconductor device having a through-hole electrode by simplifying a manufacturing process and to enhance yield of the semiconductor device. A first insulation film is formed on a top surface of a semiconductor substrate. A part of the first insulation film is etched to form an opening in which a part of the semiconductor substrate is exposed. Then a pad electrode is formed in the opening and on the first insulation film. A second insulation film is formed on a back surface of the semiconductor substrate. Then a via hole having an aperture larger than the opening is formed. And a third insulation film is formed in the via hole and on the second insulation film. The third insulation film on a bottom of the via hole is etched to expose the pad electrode. After that, a through-hole electrode and a wiring layer are formed in the via hole. Finally, the semiconductor substrate is cut and separated into a plurality of semiconductor dice.
摘要:
The invention provides a semiconductor chip manufacturing method including the steps of: forming a concave portion extended in the thickness direction of a semiconductor substrate which has a front surface and a rear surface and has a function device formed on the front surface, from the front surface; forming an oxidation preventive film made of an inert first metal material by supplying the first metal material onto the inner wall surface of the concave portion; supplying a second metal material containing a metal which is oxidized more easily than the first metal material to the inside of the concave portion after the step of forming the oxidation preventive film; electrically connecting the second metal material supplied to the inside of the concave portion and the function device; and thinning the semiconductor substrate so that the thickness thereof becomes thinner than the depth of the concave portion by removing the semiconductor substrate from the rear surface while leaving the oxidation preventive film.
摘要:
This invention offers a manufacturing method to reduce a manufacturing cost of a semiconductor device having a through-hole electrode by simplifying a manufacturing process and to enhance yield of the semiconductor device. A first insulation film is formed on a top surface of a semiconductor substrate. A part of the first insulation film is etched to form an opening in which a part of the semiconductor substrate is exposed. Then a pad electrode is formed in the opening and on the first insulation film. A second insulation film is formed on a back surface of the semiconductor substrate. Then a via hole having an aperture larger than the opening is formed. And a third insulation film is formed in the via hole and on the second insulation film. The third insulation film on a bottom of the via hole is etched to expose the pad electrode. After that, a through-hole electrode and a wiring layer are formed in the via hole. Finally, the semiconductor substrate is cut and separated into a plurality of semiconductor dice.
摘要:
The invention relates to a semiconductor device manufacturing method which can provide high reliability in electric connection between an electrode of a semiconductor chip and a substrate. Sealing resin is coated in a region of a substrate where a first electrode is not formed. A semiconductor chip formed with a second electrode on its end portion is prepared and disposed so as to face to a front surface of the substrate. The end portion of the semiconductor chip is pressed from its back surface by shifting a first movable plate downward to press the second electrode into contact with the first electrode. After then, a center portion of the semiconductor chip is pressed from its back surface by shifting a second movable plate downward to fill a space between the substrate and the semiconductor chip with the sealing resin.
摘要:
A semiconductor device production method including: the step of forming a stopper mask layer of a first metal on a semiconductor substrate, the stopper mask layer having an opening at a predetermined position thereof; the metal supplying step of supplying a second metal into the opening of the stopper mask layer to form a projection electrode of the second metal; and removing the stopper mask layer after the metal supplying step.
摘要:
A manufacturing method for a semiconductor device, including the steps of: forming a passivation film that covers a surface of a semiconductor substrate on which electrodes have been formed, in which an opening is formed so as to expose a predetermined electrode from among the electrodes; forming a diffusion prevention plug of a first metal in the vicinity of the opening in the passivation film; supplying a second metal material to the surface of the semiconductor substrate on which the diffusion prevention plug has been formed, so as to form a seed layer of the second metal; forming a resist film that covers the seed layer and in which an opening is formed so as to expose a predetermined region of the seed layer on the diffusion prevention plug; supplying a third metal material into the opening in the resist film so as to form a protrusion electrode of the third metal; removing the resist film after the step of forming a protrusion electrode; and removing the seed layer after the step of forming a protrusion electrode.
摘要:
The invention relates to a semiconductor device manufacturing method which can provide high reliability in electric connection between an electrode of a semiconductor chip and a substrate. Sealing resin is coated in a region of a substrate where a first electrode is not formed. A semiconductor chip formed with a second electrode on its end portion is prepared and disposed so as to face to a front surface of the substrate. The end portion of the semiconductor chip is pressed from its back surface by shifting a first movable plate downward to press the second electrode into contact with the first electrode. After then, a center portion of the semiconductor chip is pressed from its back surface by shifting a second movable plate downward to fill a space between the substrate and the semiconductor chip with the sealing resin.
摘要:
A semiconductor device production method including: the step of forming a stopper mask layer of a first metal on a semiconductor substrate, the stopper mask layer having an opening at a predetermined position thereof; the metal supplying step of supplying a second metal into the opening of the stopper mask layer to form a projection electrode of the second metal; and removing the stopper mask layer after the metal supplying step.
摘要:
The invention provides a semiconductor chip manufacturing method including the steps of: forming a concave portion extended in the thickness direction of a semiconductor substrate which has a front surface and a rear surface and has a function device formed on the front surface, from the front surface; forming an oxidation preventive film made of an inert first metal material by supplying the first metal material onto the inner wall surface of the concave portion; supplying a second metal material containing a metal which is oxidized more easily than the first metal material to the inside of the concave portion after the step of forming the oxidation preventive film; electrically connecting the second metal material supplied to the inside of the concave portion and the function device; and thinning the semiconductor substrate so that the thickness thereof becomes thinner than the depth of the concave portion by removing the semiconductor substrate from the rear surface while leaving the oxidation preventive film.