Abstract:
A light emitting diode device has a bulk gallium and nitrogen containing substrate with an active region. The device has a lateral dimension and a thick vertical dimension such that the geometric aspect ratio forms a volumetric diode that delivers a nearly uniform current density across the range of the lateral dimension.
Abstract:
A method for large-scale manufacturing of gallium nitride boules. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and grown ammonothermally. The seed orientation and mounting geometry are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus. The method is scalable up to very large volumes and is cost effective.
Abstract:
A packaged optical device includes a substrate having a surface region with light emitting diode devices fabricated on a semipolar or nonpolar GaN substrate. The LEDs emit polarized light and are characterized by an overlapped electron wave function and a hole wave function. Phosphors within the package are excited by the polarized light and, in response, emit electromagnetic radiation of a second wavelength.
Abstract:
A method for growth of indium-containing nitride films is described, particularly a method for fabricating a gallium, indium, and nitrogen containing material. On a substrate having a surface region a material having a first indium-rich concentration is formed, followed by a second thickness of material having a first indium-poor concentration. Then a third thickness of material having a second indium-rich concentration is added to form a sandwiched structure which is thermally processed to cause formation of well-crystallized, relaxed material within a vicinity of a surface region of the sandwich structure.
Abstract:
A gettered polycrystalline group III metal nitride is formed by heating a group III metal with an added getter in a nitrogen-containing gas. Most of the residual oxygen in the gettered polycrystalline nitride is chemically bound by the getter. The gettered polycrystalline group III metal nitride is useful as a raw material for ammonothermal growth of bulk group III nitride crystals.
Abstract:
An apparatus and associated method for large-scale manufacturing of gallium nitride. The apparatus comprises a large diameter autoclave or internally-heated high pressure vessel, a seed rack, and a raw material basket. Methods include effective means for utilization of seed crystals. The apparatus and methods are scalable up to very large volumes and are cost effective.
Abstract:
An edge emitting solid state laser and method. The laser comprises at least one AlInGaN active layer on a bulk GaN substrate with a non-polar or semi-polar orientation. The edges of the laser comprise {1 1−2±6} facets. The laser has high gain, low threshold currents, capability for extended operation at high current densities, and can be manufactured with improved yield. The laser is useful for optical data storage, projection displays, and as a source for general illumination.
Abstract:
A nitride crystal or wafer with a removable surface layer comprises a high quality nitride base crystal, a release layer, and a high quality epitaxial layer. The release layer has a large optical absorption coefficient at wavelengths where the base crystal is substantially transparent and may be etched under conditions where the nitride base crystal and the high quality epitaxial layer are not. The high quality epitaxial layer may be removed from the nitride base crystal by laser liftoff or by chemical etching after deposition of at least one epitaxial device layer. The nitride crystal with a removable surface layer is useful as a substrate for a light emitting diode, a laser diode, a transistor, a photodetector, a solar cell, or for photoelectrochemical water splitting for hydrogen generation.
Abstract:
A packaged light emitting device. The device includes a substrate member comprising a surface region and one or more light emitting diode devices overlying the surface region. In a specific embodiment, at least one of the light emitting diode device is fabricated on a semipolar or nonpolar GaN containing substrate. The one or more light emitting diode devices are fabricated on the semipolar or nonpolar GaN containing substrate emits substantially polarized emission of one or more first wavelengths. At least at least one of the light emitting diode devices comprise a quantum well region, which is characterized by an electron wave function and a hole wave function. In a specific embodiment, the electron wave function and the hole wave function are substantially overlapped within a predetermined spatial region of the quantum well region. In a specific embodiment, the device has a thickness of one or more entities formed overlying the one or more light emitting diode devices. The one or more entities are excited by the substantially polarized emission and emitting electromagnetic radiation of one or more second wavelengths.
Abstract:
An improved high pressure apparatus and methods for processing supercritical fluids is described. The apparatus includes a capsule, a heater, and at least one ceramic ring contained by a metal sleeve. The apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C.