Abstract:
Semiconductor devices and methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a stack of semiconductor materials from an epitaxial substrate, where the stack of semiconductor materials defines a heterojunction, and where the stack of semiconductor materials and the epitaxial substrate further define a bulk region that includes a portion of the semiconductor stack adjacent the epitaxial substrate. The method further includes attaching the stack of semiconductor materials to a carrier, where the carrier is configured to provide a signal path to the heterojunction. The method also includes exposing the bulk region by removing the epitaxial substrate.
Abstract:
Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
Abstract:
Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
Abstract:
Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
Abstract:
Some embodiments include a conductive structure which has a first conductive material having a work function of at least 4.5 eV, and a second conductive material over and directly against the first conductive material. The second conductive material has a work function of less than 4.5 eV, and is shaped as an upwardly-opening container. The conductive structure includes a third conductive material within the upwardly-opening container shape of the second conductive material and directly against the second conductive material. The third conductive material is a different composition relative to the second conductive material. Some embodiments include wordlines, and some embodiments include transistors.
Abstract:
Light emitting diodes (“LEDs”) with N-polarity and associated methods of manufacturing are disclosed herein. In one embodiment, a method for forming a light emitting diode on a substrate having a substrate material includes forming a nitrogen-rich environment at least proximate a surface of the substrate without forming a nitrodizing product of the substrate material on the surface of the substrate. The method also includes forming an LED structure with a nitrogen polarity on the surface of the substrate with a nitrogen-rich environment.
Abstract:
Various embodiments of light emitting devices with built-in chromaticity conversion and associated methods of manufacturing are described herein. In one embodiment, a method for manufacturing a light emitting device includes forming a first semiconductor material, an active region, and a second semiconductor material on a substrate material in sequence, the active region being configured to produce a first emission. A conversion material is then formed on the second semiconductor material. The conversion material has a crystalline structure and is configured to produce a second emission. The method further includes adjusting a characteristic of the conversion material such that a combination of the first and second emission has a chromaticity at least approximating a target chromaticity of the light emitting device.
Abstract:
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and a plurality of hemispherical grained silicon (“HSG”) structures on the substrate surface of the substrate material. The solid state lighting device also includes a semiconductor material on the substrate material, at least a portion of which is between the plurality of HSG structures.
Abstract:
Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and a plurality of hemispherical grained silicon (“HSG”) structures on the substrate surface of the substrate material. The solid state lighting device also includes a semiconductor material on the substrate material, at least a portion of which is between the plurality of HSG structures.
Abstract:
Semiconductor growth substrates and associated systems and methods for die singulation are disclosed. A representative method for manufacturing semiconductor devices includes forming spaced-apart structures at a dicing street located between neighboring device growth regions of a substrate material. The method can further include epitaxially growing a semiconductor material by adding a first portion of semiconductor material to the device growth regions and adding a second portion of semiconductor material to the structures. The method can still further include forming semiconductor devices at the device growth regions, and separating the semiconductor devices from each other at the dicing street by removing the spaced-apart structures and the underlying substrate material at the dicing street.