Abstract:
A method produces a plurality of optoelectronic modules, and includes: A) providing a metallic carrier assembly with a plurality of carrier units; B) applying a logic chip, each having at least one integrated circuit, to the carrier units; C) applying emitter regions that generate radiation, which can be individually electrically controlled; D) covering the emitter regions and the logic chips with a protective material; E) overmolding the emitter regions and the logic chips so that a cast body is formed, which joins the carrier units, the logic chips and the emitter regions to one another; F) removing the protective material and applying electrical conductor paths to the upper sides of the logic chips and to a cast body upper side; and G) dividing the carrier assembly into the modules.
Abstract:
A radiation-emitting component includes a semiconductor layer stack having an active region that emits electromagnetic radiation, and at least one surface of the semiconductor layer stack or of an optical element that transmits the electromagnetic radiation wherein the surface has a normal vector, wherein on the at least one surface of the semiconductor layer stack or of the optical element through which the electromagnetic radiation passes, an antireflection layer is arranged such that, for a predetermined wavelength, it has a minimum reflection at a viewing angle relative to the normal vector of the surface at which an increase in a zonal luminous flux of the electromagnetic radiation has approximately a maximum.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the optoelectronic component includes a semiconductor chip subdivided into a plurality of pixels, the pixels being arranged next to one another in a lateral direction and being configured to be activated individually and independently and a metallic connecting element having an upper side and an underside, the connecting element including a contiguous metallic connecting layer, which is completely passed through by a plurality of first metallic through-connections arranged next to one another in the lateral direction, wherein the first through-connections are electrically insulated and spaced from the connecting layer by insulating regions, wherein each first through-connection is unambiguously assigned to one pixel, is electrically-conductively connected to this pixel and forms a first electrical contact to this pixel, and wherein the semiconductor chip is connected by the connecting element to a carrier.
Abstract:
A radiation-emitting component includes a radiation source including at least one semiconductor layer sequence that generates radiation; an optical waveguide device disposed downstream of the radiation source; and a conversion element for radiation conversion disposed downstream of the optical waveguide device, wherein radiation is emittable from the radiation source via an emission surface and couplable into the optical waveguide device, radiation is couplable from the optical waveguide device into the conversion element via an input surface, and the emission surface of the radiation source is larger than the input surface of the conversion element.
Abstract:
An optoelectronic semiconductor device includes a carrier having a carrier top side, at least one optoelectronic semiconductor chip arranged at the carrier top side and having a radiation main side remote from the carrier top side, at least one bonding wire, at least one covering body on the radiation main side, and at least one reflective potting compound surrounding the semiconductor chip in a lateral direction and extending from the carrier top side at least as far as the radiation main side, wherein the bonding wire is completely covered by the reflective potting compound or completely covered by the reflective potting compound and the covering body, the bonding wire is fixed to the semiconductor chip in an electrical connection region on the radiation main side, and the electrical connection region is free of the covering body and covered partly or completely by the reflective potting compound.
Abstract:
An optoelectronic semiconductor component and an adaptive headlight are disclosed. In an embodiment an optoelectronic semiconductor component includes a carrier having a carrier top side and a carrier underside, a plurality of active zones, which are fitted at the carrier top side and which are designed for emitting radiation, electrical contact locations at the carrier underside, which are designed for electrically connecting the semiconductor component and a drive unit for electrically addressing the semiconductor component and for electrically driving the active zones, wherein the active zones are fitted in a regular grid at the carrier top side, wherein the grid has a grid pitch, wherein geometrical midpoints of radiation main sides of the active zones lie on grid points of the grid, and wherein a distance between the geometrical midpoints of marginal active zones and a closest edge of the carrier is at most 50% of the grid pitch.
Abstract:
A light-emitting diode includes a carrier including a metallic basic body having an outer face including a mounting face; and at least two light-emitting diode chips affixed to the carrier at least indirectly at the mounting face, wherein the at least two light-emitting diode chips are embedded in a reflective coating covering the mounting face and side faces of the at least two light-emitting diode chips, the at least two light-emitting diode chips have radiation exit surfaces facing away from the carrier, and the at least two light-emitting diode chips protrude with radiation exit surfaces out of the reflective coating, or the reflective coating terminates flush with the radiation exit surfaces of the at least two light-emitting diode chips.
Abstract:
An optoelectronic semiconductor module includes a plurality of light-emitting areas, which emit light when in operation. At least two abutting lateral edges of at least one light-emitting area are arranged at an angle of more than 0 degrees and less than 90 degrees to each other. Further embodiments relate to a display having a plurality of such modules.
Abstract:
A radiation-emitting component includes a semiconductor layer stack having an active region that emits electromagnetic radiation, and at least one surface of the semiconductor layer stack or of an optical element that transmits the electromagnetic radiation wherein the surface has a normal vector, wherein on the at least one surface of the semiconductor layer stack or of the optical element through which the electromagnetic radiation passes, an antireflection layer is arranged such that, for a predetermined wavelength, it has a minimum reflection at a viewing angle relative to the normal vector of the surface at which an increase in a zonal luminous flux of the electromagnetic radiation has approximately a maximum.
Abstract:
An assembly of electronic semiconductor components includes a carrier, at least one optoelectronic semiconductor component, a varactor component and a receiving element. The optoelectronic semiconductor component, the varactor component and the receiving element are arranged on the carrier. The optoelectronic semiconductor component and the varactor component are formed with the same semiconductor material. The optoelectronic semiconductor component has an active region configured for emitting electromagnetic radiation. The varactor component together with the receiving element forms a tunable resonant circuit. The resonant circuit is configured to draw energy for operating the optoelectronic semiconductor component from an alternating electromagnetic field.