摘要:
Thermal interface materials and method of using the same in packaging are provided. In one aspect, a thermal interface material is provided that includes an indium preform that has a first surface and a second surface opposite to the first surface, an interior portion and a peripheral boundary. The indium preform has a channel extending from the peripheral boundary towards the interior portion. The channel enables flux to liberate during thermal cycling.
摘要:
A boat for cleaning semiconductor packages, including cleaning ball grid array packages in centrifugal cleaners. The boat includes a bottom plate with receptacles for receiving semiconductor packages and a top plate having through holes, where each through hole is smaller than the receptacle with which it corresponds in the bottom plate. An alignment mechanism ensures that the top plate is aligned with the bottom plate in a manner that results in each through hole being positioned directly over a respective one of the receptacles. An attachment mechanism releasably attaches the top plate to the bottom plate in a co-planar relationship that results in the presence of a vertical space between the two plates.
摘要:
A method of maintaining z-height of an integrated circuit component, such as a multi-chip module, a chip or a die, and of visualizing alignment of an integrated circuit package during positioning of an integrated circuit component, is disclosed. The method maintains the z-height of an integrated circuit component during a solder reflow step by applying high-melting solder balls to interconnect pads on the package substrate surface. Such high-melting solder balls, for instance 90 Pb/10 Sn, do not collapse at temperatures sufficient to accomplish reflowing. The high-melting solder balls also make convenient visualization marks for alignment of the package substrate on an integrated circuit component placement tool, such as a die placement tool. A package substrate bearing high-melting solder balls in a pre-determined pattern is easily aligned by an integrated circuit placement tool using machine vision. Use of high-melting solder balls as visualization marks obviates the need for screen-printing of fiducial marks on the package substrate surface.
摘要:
An automated method of applying flux to substrate on which a semiconductor chip is to be assembled in a flip chip configuration by applying a controlled amount of flux to the substrate by a brush that applies the flux to the substrate in a programmed pattern of strokes thereby overcoming the surface tension of the flux/substrate surface. The programmed pattern of brush strokes is determined empirically for the specific combination of substrate and chip that is being assembled and is thus repeatable and operator independent. The empirically determined program also determines the amount of flux that will be applied to the substrate for the specific combination of substrate and chip being assembled. The empirically determined program is applied to a mechanical stage that moves the brush and to a flux reservoir by a CPU.
摘要:
Thermal interface materials and method of using the same in packaging are provided. In one aspect, a thermal interface material is provided that includes an indium preform that has a first surface and a second surface opposite to the first surface, an interior portion and a peripheral boundary. The indium preform has a channel extending from the peripheral boundary towards the interior portion. The channel enables flux to liberate during thermal cycling.
摘要:
A method for forming a solder joint for a package arrangement with a dispersed Sn microstructure provides a flip chip on a package, with a flip chip having solder bumps to be connected by eutectic solder joints to pads on the package. The eutectic solder is reflowed at a solder bump/pad interface with a eutectic reflow profile that is configured to achieve eutectic solder joints having substantially evenly distributed Sn grains. The eutectic reflow profile includes an increased cooling rate and decreased hold time with a higher peak temperature. A defined ratio of the pad openings in the solder mask to the under bump metallurgy is provided. The eutectic reflow profile and the defined ratio prolong fatigue life in the package arrangement.
摘要:
A package substrate includes die solder pads and pin solder fillets. The pin solder fillets might comprise between approximately 90 wt % to approximately 99 wt % tin and approximately 10 wt % to 1 wt % antimony. The die solder pads might comprise between approximately 4 wt % to approximately 8 wt % bismuth, approximately 2 wt % to approximately 4 wt % silver, approximately 0 wt % to approximately 0.7 wt % copper, and approximately 87 wt % to approximately 92 wt % tin. The die solder pads might comprise between approximately 7 wt % to approximately 20 wt % indium, between approximately 2 wt % to approximately 4.5 wt % silver, between approximately 0 wt % to approximately 0.7 wt % copper, between approximately 0 wt % to approximately 0.5 wt % antimony, and between approximately 74.3 wt % to approximately 90 wt % tin.
摘要:
When soldering semiconductor devices in a solder reflow furnace flux is vaporized and carried to the furnace exhaust pipe. The flux condenses on the walls of the exhaust pipe and drips back into the furnace contaminating production parts. A solder reflow furnace with a flux effluent collector prevents flux drip-back. The flux effluent collector has an exhaust gas heater that maintains flux effluent in a gaseous state, a flux cooler, to subsequently condense flux, and a flux condensation region where the flux condenses. The flux condensation region is offset from the furnace's exhaust opening so that condensed flux cannot drip back into the furnace.
摘要:
A method and apparatus are provided for selectively depositing flux on a plurality of flip-chip bumps arranged on a semiconductor by mounting a flux stamp on the semiconductor chip. The flux stamp has a plurality of flux holes arranged in a pattern substantially identically corresponding to the arrangement of the flip-chip bumps of the semiconductor chip. Different flux stamps are prepared for various kinds of semiconductor chips having different flip-chip bump arrangements. Flux is deposited though the flux holes of the flux stamp which selectively exposing the upper surfaces of the flip-chip bumps of the chip, thereby leaving no flux on the chip surface between the flip-chip bumps.
摘要:
A method of assembling a substrate and die in a flip chip configuration uses a non-hazardous cleaning solvent to clean the flux residue. The non-hazardous cleaning solvent utilized is Ionox obtained from Kyzen Corporation. Optimized process parameters are: time 10-30 minutes, temperature 70-90.degree. C., pressure 40-70 psi, rotation speed and reversals 100-1000 rpm and 24-100 reversal cycles.