Abstract:
Disclosed is a plasma processing method for generating plasma between an upper electrode connected with a VF power supply and a susceptor disposed to face the upper electrode to perform a plasma processing on a wafer by the plasma. The plasma processing method includes: providing an auxiliary circuit configured to reduce a difference between a reflection minimum frequency of a first route where a high frequency current generated from the VF power supply flows before ignition of the plasma and a reflection minimum frequency of a second route where the high frequency current generated from the VF power supply flows after the ignition of the plasma; igniting the plasma; and maintaining the plasma.
Abstract:
A film formation device to conduct a film formation process for a substrate includes a rotating table, a film formation area configured to include a process gas supply part, a plasma processing part, a lower bias electrode provided at a lower side of a position of a height of the substrate on the rotating table, an upper bias electrode arranged at the same position of the height or an upper side of a position of the height, a high-frequency power source part connected to at least one of the lower bias electrode and the upper bias electrode and configured to form a bias electric potential on the substrate in such a manner that the lower bias electrode and the upper bias electrode are capacitively coupled, and an exhaust mechanism.
Abstract:
There is provided a plasma processing device. The plasma processing device comprises: a processing chamber; a partition plate that has an insulating property, and configured to partition a space in the processing chamber into a reaction chamber in which an object to be processed is mounted and a plasma generating chamber in which plasma is generated, wherein a first electrode is provided on a surface of the partition plate on the side of the plasma generating chamber, and the partition plate has a plurality of through holes formed for supplying active species contained in the plasma generated in the plasma generating chamber to the reaction chamber; a second electrode disposed in the plasma generating chamber so as to face the first electrode; and a power supply configured to supply high-frequency power obtained by phase-controlling and superimposing high-frequency powers of a plurality of frequencies to one of the first electrode and the second electrode when the plasma is generated in the plasma generating chamber.
Abstract:
A plasma processing apparatus includes a high frequency antenna having first and second antenna elements. One end of the first antenna element is grounded and the other end thereof is connected to a high frequency power supply. One end of the second antenna element is an open end and the other end thereof is connected to either one of the one end and the other end of the first antenna element, a line length of the second antenna element having a value obtained by multiplying ((λ/4)+nλ/2) by a fractional shortening (λ is a wavelength of high frequency in vacuum and n is a natural number). A circuit viewed from the high frequency power supply toward the high frequency antenna is configured to generate, when a frequency of a high frequency power is changed, two resonant frequencies by an adjustment of the impedance adjustment unit.
Abstract:
A transfer chamber is provided between a processing unit for performing a predetermined process on a target substrate to be processed in a depressurized environment and an atmospheric maintaining unit for maintaining the target substrate in an atmospheric environment to transfer the target substrate therebetween. The transfer chamber includes a chamber main body for accommodating the target substrate, a gas exhaust unit for exhausting the chamber main body to set the chamber main body to the depressurized environment, and a gas supply unit for supplying a predetermined gas to the chamber main body to set the chamber main body in the atmospheric environment. Further, in the transfer chamber, an ionization unit is provided outside the chamber main body, for ionizing the predetermined gas and an ionized gas supply unit is provided to supply the ionized gas generated by the ionization unit to the chamber main body.
Abstract:
A plasma processing apparatus includes a high frequency antenna having first and second antenna elements. One end of the first antenna element is grounded and the other end thereof is connected to a high frequency power supply. One end of the second antenna element is an open end and the other end thereof is connected to either one of the one end and the other end of the first antenna element, a line length of the second antenna element having a value obtained by multiplying ((λ/4)+nλ/2) by a fractional shortening (λ is a wavelength of high frequency in vacuum and n is a natural number). A circuit viewed from the high frequency power supply toward the high frequency antenna is configured to generate, when a frequency of a high frequency power is changed, two resonant frequencies by an adjustment of the impedance adjustment unit.
Abstract:
A plasma processing apparatus includes a plasma generation unit configured to convert a processing gas supplied into a processing chamber into plasma by an inductive coupling. The plasma generation unit includes a first high frequency antenna formed of a vortex coil arranged adjacent to the processing chamber through a dielectric window, a second high frequency antenna having a natural resonant frequency and formed of a vortex coil arranged at an outer or inner peripheral side of the first high frequency antenna, and an impedance adjustment unit for adjusting a resonant frequency of a circuit viewed from the high frequency power supply toward the first high frequency antenna. The circuit viewed from the high frequency power supply toward the first high frequency antenna is configured to have two resonant frequencies depending on adjustment of the impedance adjustment unit when a frequency of high frequency power is changed.
Abstract:
A plasma processing apparatus is provided. According to the apparatus, a main antenna connected to a high frequency power source and an auxiliary antenna electrically insulated from main antenna is arranged. Moreover, projection areas when the main antenna and the auxiliary antenna are seen in a plan view are arranged so as not to overlap with each other. More specifically, the auxiliary antenna is arranged on a downstream side in a rotational direction of the turntable relative to the main antenna. Then, a first electromagnetic field is generated in the auxiliary antenna by way of an induction current flowing through the main antenna, and a second induction plasma is generated even in an area under the auxiliary antenna in addition to an area under the main antenna by resonating the auxiliary antenna.
Abstract:
[Solution] A device according to the present disclosure comprises: a plasma generation chamber that is provided with a plasma generation mechanism for activating a second processing gas, when forming a film on a substrate by supplying each of a first processing gas, a substitution gas, the plasma-activated second processing gas, and the substitution gas, in order and by turns, to a processing vessel in which an interior processing space is evacuated so as to become a vacuum atmosphere; an evacuation mechanism that evacuates the plasma generation chamber; and a supply destination changing valve that is provided on an evacuation path connecting the plasma generation chamber and the evacuation mechanism, and opens and closes such that the supply destination of the plasma-activated second processing gas switches between a downstream side of the evacuation path, and the processing space.
Abstract:
A plasma processing apparatus includes a processing chamber including a dielectric window; a coil shaped RF antenna provided outside the dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate to be processed; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a desired plasma process on the target substrate; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the processing chamber. The apparatus further includes a floating coil electrically floated and arranged at a position outside the processing chamber where the floating coil is to be coupled with the RF antenna by an electromagnetic induction; and a capacitor provided in a loop of the floating coil.