Abstract:
In one embodiment, a method of forming an out-of-plane electrode includes forming an oxide layer above an upper surface of a device layer, etching an etch stop perimeter defining trench extending through the oxide layer, forming a first cap layer portion on an upper surface of the oxide layer and within the etch stop perimeter defining trench, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the deposited first material portion, and vapor releasing a portion of the oxide layer with the etch stop portion providing a lateral etch stop.
Abstract:
Embodiments of a method for forming a suspended membrane include depositing a first electrically conductive material above a sacrificial layer and within a boundary trench. The first electrically conductive material forms a corner transition portion above the boundary trench. The method further includes removing a portion of the first electrically conductive material that removes at least a portion of uneven topography of the first electrically conductive material. The method further includes depositing a second electrically conductive material. The second electrically conductive material extends beyond the boundary trench. The method further includes removing the sacrificial layer through etch openings and forming a cavity below the second electrically conductive material. The first electrically conductive material defines a portion of a sidewall boundary of the cavity.
Abstract:
A method for manufacturing a protective layer for protecting an intermediate structural layer against etching with hydrofluoric acid, the intermediate structural layer being made of a material that can be etched or damaged by hydrofluoric acid, the method comprising the steps of: forming a first layer of aluminium oxide, by atomic layer deposition, on the intermediate structural layer; performing a thermal crystallization process on the first layer of aluminium oxide, forming a first intermediate protective layer; forming a second layer of aluminium oxide, by atomic layer deposition, above the first intermediate protective layer; and performing a thermal crystallization process on the second layer of aluminium oxide, forming a second intermediate protective layer and thereby completing the formation of the protective layer. The method for forming the protective layer can be used, for example, during the manufacturing steps of an inertial sensor such as a gyroscope or an accelerometer.
Abstract:
A pressure sensor having a diaphragm having a boss with a pattern. The diaphragm having a boss may be regarded as a bossed diaphragm. The bossed diaphragm may have higher sensitivity than a flat plate diaphragm having the same area as the bossed diaphragm. The bossed diaphragm may incorporate a simple cross pattern that can further improve the sensitivity and linearity of a pressure response of the diaphragm at low pressures. Reduction of sharp edges and corners of the boss and its legs around the periphery of the diaphragm may reduce high stress points and thus increase the burst pressure rating of the bossed diaphragm.
Abstract:
Embodiments of a method for forming a suspended membrane include depositing a first electrically conductive material above a sacrificial layer and within a boundary trench. The first electrically conductive material forms a corner transition portion above the boundary trench. The method further includes removing a portion of the first electrically conductive material that removes at least a portion of uneven topography of the first electrically conductive material. The method further includes depositing a second electrically conductive material. The second electrically conductive material extends beyond the boundary trench. The method further includes removing the sacrificial layer through etch openings and forming a cavity below the second electrically conductive material. The first electrically conductive material defines a portion of a sidewall boundary of the cavity.
Abstract:
Method for manufacturing a semiconductor device includes the steps of forming a lower electrode pattern on a substrate, forming a first interlayer insulating layer on the lower electrode pattern, forming an upper electrode pattern on the first interlayer insulating layer, forming a second interlayer insulating layer on the upper electrode pattern, forming an etch blocking layer on a side of the upper electrode pattern, wherein the etch blocking layer passes through the first interlayer insulating layer, forming a cavity which exposes the side of the etch blocking layer by etching the second interlayer insulating layer, and forming a contact ball in the cavity.
Abstract:
Suspended structures are provided using selective etch technology. Such structures can be protected on all sides when the selective undercut etch is performed, thereby providing excellent control of feature geometry combined with superior material quality.
Abstract:
A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
Abstract:
A method of fabricating an integrated structure for MEMS device and semiconductor device comprises steps of: providing a substrate having a transistor thereon in a semiconductor device region and a first MEMS component thereon in a MEMS region; performing a interconnect process on the substrate in the semiconductor device region to form a plurality of first dielectric layers, at least a conductive plug and at least a conductive layer in the first dielectric layers; forming a plurality of second dielectric layers and an etch stopping device in the second dielectric layers on the substrate in a etch stopping device region; forming a plurality of third dielectric layers and at least a second MEMS component in the third dielectric layers on the substrate in the MEMS region; and performing an etching process to remove the third dielectric layers in the MEMS region.
Abstract:
A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience whilst also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer. The use of silicon carbide being beneficial within the formation of MEMS elements such as motors, gears, rotors, translation drives, etc where increased hardness reduces wear of such elements during operation.