摘要:
One aspect of the present invention includes a method of fabricating an electronic device. According to one embodiment, the method comprises providing a substrate having dielectric oxide surface areas adjacent to electrically conductive surface areas, chemically bonding an anchor compound with the dielectric oxide surface areas so as to form an anchor layer, initiating the growth of a metal using the electrically conductive surface areas and growing the metal so that the anchor layer also bonds with the metal. The anchor compound has at least one functional group capable of forming a chemical bond with the oxide surface and has at least one functional group capable of forming a chemical bond with the metal. Another aspect of the present invention is an electronic device. A third aspect of the present invention is a solution comprising the anchor compound.
摘要:
Methods of forming a capping layer on conductive lines in a semiconductor device may be characterized by the following operations: (a) providing a semiconductor substrate comprising a dielectric layer having (i) exposed conductive lines (e.g., copper lines) disposed therein, and (ii) an exposed barrier layer disposed thereon; and (b) depositing a capping layer material on at least the exposed conductive lines of the semiconductor substrate. In certain embodiments, the method may also involve removing at least a portion of a conductive layer (e.g., overburden) disposed over the barrier layer and conductive lines to expose the barrier layer.
摘要:
A method for metal plating with good adhesion to materials that are difficult to plate wherein a material to be plated is surface-treated with a silane coupling agent having in a molecule thereof a functional group with a metal-capturing capability, is heat treated at a high temperature of at least 150° C. in air or an inert gas atmosphere, surface treatment is performed with a solution containing a noble metal compound, and electroless plating is performed. Alternatively, a metal plating method is provided wherein a material to be plated is surface-treated with a liquid in which a noble metal compound and a silane coupling agent having in a molecule thereof a functional group with a metal-capturing capability have already been mixed or reacted, is heat treated at a high temperature of at least 150° C. in air or an inert gas atmosphere, and electroless plating is performed.
摘要:
The invention relates to a composition for printing a seed layer for electrodeposition or electroless deposition of a metal for the production of full-area or structured metallic surfaces on a substrate, comprising 0.1 to 6% by weight of electrolessly and/or electrolytically coatable particles, 40 to 98.8% by weight of at least one solvent, 0 to 15% by weight of a crosslinker, 0.1 to 6% by weight of at least one dispersing additive, 0 to 5% by weight of at least one further additive and 1 to 20% by weight of at least one polymer, said at least one polymer being in the form of a dispersion. The invention further relates to a process for producing full-area or structured metallic surfaces on a substrate, and to a use of the process.
摘要:
A porous silicon zone is metallized by performing in situ reduction of metallic ions dissolved in an aqueous solution and fixing of the metallic particles obtained on said zone in a single step. This step consists in particular in bringing the solution containing the metallic ions into contact with the zone to be metallized, the surface whereof has previously been functionalized to enable in situ reduction of the metallic ions and fixing of the metallic particles. Functionalization of the porous silicon zone is achieved by grafting two particular and distinct types of chemical functions. The first function used is a chelating chemical function for the metallic ions and/or for the metal corresponding to the metallic ions, whereas the second function is a reducing chemical function for the metallic ions. Such a metallization can be used for producing an electrically conducting porous diffusion layer of a fuel cell.
摘要:
The present disclosure generally describes methods for forming nanowires on a substrate, where carbon nanotubes may be placed in a pattern on a surface of a substrate. The surface of the substrate may be exposed to conditions such that carbothermal reduction occurs between the carbon nanotubes and the substrate to form nanotrenches in the pattern, and a conductive material may be deposited into the nanotrenches for forming nanowires.
摘要:
The object of the present invention is to provide a pretreating agent for electroless plating that is stable and soluble in organic solvents, a method of electroless plating with excellent adhesiveness using it and an electroless plated product. An object to be plated is pre-treated using a pretreating agent for electroless plating comprising a noble metal soap of naphthenic acid or a fatty acid having 5 to 25 carbon atoms or preferably using a pretreating agent for electroless plating additionally comprising an imidazole silane coupling agent or other silane coupling agent having metal capturing ability, and then electroless plated. The noble metal soap is preferably a palladium soap.
摘要:
A method of fabricating an integrated circuit comprising providing a substrate, forming a first layer on the substrate by electrochemical deposition using an electrolyte solution, and converting at least a portion of the first layer into a second layer by electrochemical oxidation using an electrolyte solution, the second layer being an oxide layer.
摘要:
The present invention provides a method for forming a metal pattern comprising a step of forming a polymer layer on a substrate; (a2) a step of applying a metal ion or the like to the polymer layer; (a3) a step of forming a conductive layer by reducing the metal ion or the like; (a4) a step of forming a patterned resist layer on the conductive layer; (a5) a step of forming a metal pattern by electroplating in the regions where the resist layer is not formed; (a6) a step of separating the resist layer; (a7) a step of removing the conductive layer from regions protected by the resist layer; and (a8) a step of performing a hydrophobilizing treatment.
摘要:
The present invention relates to a process for selectively coating certain areas of a composite surface with a conductive film, to a process for fabricating interconnects in microelectronics, and to processes and methods for fabricating integrated circuits, and more particularly to the formation of networks of metal interconnects, and also to processes and methods for fabricating microsystems and connectors.