Abstract:
Exemplary methods of forming a semiconductor structure may include etching a via through a semiconductor structure to expose a first circuit layer interconnect metal. The methods may include forming a layer of a material overlying the exposed first circuit layer interconnect metal. The methods may also include forming a barrier layer within the via having minimal coverage along the bottom of the via. The methods may additionally include forming a second circuit layer interconnect metal overlying the layer of material.
Abstract:
A method of processing a substrate includes: depositing an etch stop layer atop a first dielectric layer; forming a feature in the etch stop layer and the first dielectric layer; depositing a first metal layer to fill the feature; etching the first metal layer to form a recess; depositing a second dielectric layer to fill the recess wherein the second dielectric layer is a low-k material suitable as a metal and oxygen diffusion barrier; forming a patterned mask layer atop the substrate to expose a portion of the second dielectric layer and the etch stop layer; etching the exposed portion of the second dielectric layer to a top surface of the first metal layer to form a via in the second dielectric layer; and depositing a second metal layer atop the substrate, wherein the second metal layer is connected to the first metal layer by the via.
Abstract:
An article having alternating oxide layers and nitride layers is etched by an etch process. The etch process includes providing a first gas comprising C4F6H2 in a chamber of an etch reactor, ionizing the C4F6H2 containing gas to produce a plasma comprising a plurality of ions, and etching the article using the plurality of ions.
Abstract:
Atomic layer deposition in selected zones of a workpiece surface is accomplished by transforming the surfaces outside the selected zones to a hydrophobic state while the materials in the selected zones remain hydrophilic.
Abstract:
Embodiments of the present disclosure provide methods for patterning rectangular features with a sequence of lithography, atomic layer deposition (ALD) and etching. Embodiment of the present disclosure includes forming first line clusters along a first direction and second line clusters over the first line clusters in a direction traversing the first direction. The first and second line clusters both include core lines formed from a core material, spacers formed from first and second materials by ALD and etching. After formation of the first and second line clusters, rectangular openings can be formed by selectively etching one or two of the core material, the first material or the second material.
Abstract:
Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. A pedestal may be disposed within the processing volume and a first electrode may be coupled to the pedestal. A moveable stem may extend through the chamber body opposite the pedestal and a second electrode may be coupled to the moveable stem. In certain embodiments, a fluid containment ring may be coupled to the pedestal and a dielectric containment ring may be coupled to the second electrode.
Abstract:
Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
Abstract:
A plasma source consisting of an array of plasma point sources that controls generation of charged particles and radicals spatially and temporally over a user defined region.
Abstract:
Methods for etching a material layer disposed on the substrate using a combination of a main etching step and a cyclical etching process are provided. The method includes performing a main etching process in a processing chamber to an oxide layer, forming a feature with a first predetermined depth in the oxide layer, performing a treatment process on the substrate by supplying a treatment gas mixture into the processing chamber to treat the etched feature in the oxide layer, performing a chemical etching process on the substrate by supplying a chemical etching gas mixture into the processing chamber, wherein the chemical etching gas includes at least an ammonium gas and a nitrogen trifluoride, wherein the chemical etching process further etches the feature to a second predetermined depth, and performing a transition process on the etched substrate by supplying a transition gas mixture into the processing chamber.
Abstract:
Embodiments of the present invention provide methods for forming an interconnection structure in semiconductor devices without breaking vacuum with minimum oxidation/atmosphere exposure. In one embodiment, a method for forming an interconnection structure for semiconductor devices includes supplying a barrier layer etching gas mixture into a first processing chamber having a substrate disposed therein to etch portions of a barrier layer exposed by a patterned metal layer until the underlying substrate is exposed, the first processing chamber disposed in a processing system, and forming a liner layer on the substrate covering the etched barrier layer in a second processing chamber disposed in the processing system.