Abstract:
A dosing device (1) for liquid fuels, in particular for input into a chemical reformer in order to recover hydrogen, having at least one metering device (2) for metering fuel into a metering conduit (12) and having a nozzle body (7), adjoining the metering conduit (12), having spray discharge openings (6) which open into a metering chamber (10), the nozzle body (7) projecting with a spherical portion at the spray-discharge end into the metering chamber (10), and the spray discharge openings (6) being distributed over the spherical portion of the nozzle body (7).
Abstract:
An apparatus is provided to generate a gas by mixing chemicals with water. Typically, the production of gas, particularly oxygen, by combining water with powders and other dry chemicals has not been widely employed. There have existed a number of preexisting barriers such as undesirable flow rates and yields. However, by utilizing multiple reaction chambers the flow rates and yields can be more precisely tailored for a variety of situations that may call for particular flow rates and yields. Additionally, the use of the dry chemicals would allow for a long self-life allowing the apparatus to be particularly useful in emergency situations.
Abstract:
An apparatus for supplying fuel to a gas-generating system to generate hydrogen-rich gas in a fuel cell system includes two gas-generating components; a metering device, which can supply fuel by a valve-controlled distribution to each of the two gas-generating components; and a fuel storage basin. The fuel basin which supplies fuel to one of the gas-generating components during a changeover or connecting process between the gas-generating components.
Abstract:
A purgeable manifold system for the movement of low vapor pressure chemicals that may be embodied in a variety of forms. In one embodiment, a container for storing the low vapor pressure chemical has a plurality of ports; a first manifold detachably connects a first port to a source of gas, vent, or vacuum by flow communication through a first diaphragm valve; a second manifold detachably connects a second port to a source of gas, vent, vacuum, or low vapor pressure chemical, or to a process tool by flow communication through a second and a third diaphragm valve, or alternatively detachably connects a third port to the same source by flow communication through a fourth and the third diaphragm valve; and a third manifold, detachably connects a fourth port to a source of gas, vent, or vacuum by flow communication through a fifth diaphragm valve.
Abstract:
A method comprises continuously supplying an alcohol to a pressurized reaction system, pressurizing carbon monoxide with a compressor 8 attached to a first feed line 22, for continuously supplying carbon monoxide to the reaction system via a second feed line 23 with a reference flow rate F, and converging excess carbon monoxide in the reaction system in the first feed line via a branched circulation line 24 for allowing to react alcohol with carbon monoxide. The reference flow rate F in the second feed line 23 is a total rate of a reference consumption flow rate Fcs in the reaction and a flow rate F1 in excess rate over a fluctuation consumption flow rate ΔFcv in the reaction system (F=Fcs+F1, F1>ΔFcv). According to the pressure fluctuation of the gaseous phase in the reaction system, the flow rate in the circulation line 24 is controlled to a flow rate Fr=F1−ΔFcv and the feed flow rate in the first feed line 22 is controlled to a flow rate Fsu=Fcs+ΔFcv, for compensating a consumption rate variation in the reaction system with the feed flow rate of carbon monoxide. This ensures discharge inhibition of the gaseous reactant in a liquid phase pressurized reaction system (such as carbonylation reaction system) and effective utilization of the reactant for the reaction.
Abstract:
A processing system includes a variable volume chamber. A liquid or solid precursor source may be included in the variable volume chamber. The volume of the variable volume chamber may be controlled to provide for a predictable precursor flow to a processing chamber. In some implementations, multiple variable volume chambers may be provided.
Abstract:
A multi-channel fluid dispenser includes a reservoir with multiple internal chambers, a multi-channel liquid dispensing head, a plurality of fluid-delivery conduits, and support and positioning elements. The fluid-delivery conduits receive liquid from the chambers in the reservoir and deliver it to the dispensing head. The support and positioning elements are operable to support and position the dispensing head so that it can deliver the liquid from the reservoir to an underlying receiver. The fluid-delivery conduits include one or more optional flow control features that improve the accuracy of the dispensing operation. The multi-channel liquid dispensing head, which includes a valve-support member, a plurality of valves and a plurality of nozzles, is advantageously movable in three directions to facilitate alignment with an underlying receiver. Movement of the dispensing head along two axes is provided by the simple expedient of elongate holes having their long axes aligned in mutually orthogonal directions. In some embodiments, the valves are tiltable away from the vertical so that liquid dispensed from such tilted valves is directed at a non-normal angle into a receiver.
Abstract:
The invention is a hydrogen generator for supplying hydrogen to the anode of a fuel cell and electrons to the fuel cell electrical circuit. The hydrogen generator employs a consumable electrode comprising an alkali metal which is brought into contact with an aqueous solution of its hydroxide liberating hydrogen. The hydrogen generator operates as an alkaline cell electrode emersed in the electrolyte that is continuously being formed by the oxidation of the alkali metal within the electrode by its reaction in the electrolyte with the cycled water produced at the cathode of the fuel cell. The current flow within the hydrogen generator internal circuit of the reaction chamber is approximately equivalent to the feed rate of the consumable electrode into the electrolyte and the quantity of hydrogen formed is proportional to the equivalent weight of the water reacted.
Abstract:
A method of producing a chemical reaction is provided. In the practice of one embodiment of the invention, the method includes the steps of providing a reaction vessel and reactants; placing at least one of the reactants in the reaction vessel; and allowing the reaction to proceed for a time interval. A volume increment of at least one of the reactants is withdrawn from the reaction vessel, and a volume increment of at least one of the reactants is added to the reaction vessel. The volume increment withdrawal/addition is repeated after successive time intervals until the reaction reaches a substantially steady state. In various alternative embodiments, the volume increment withdrawal can take place before, after, or contemporaneously with the volume increment addition.
Abstract:
The present invention provides a system and process providing variable access to, as well as quick and accurate dispensing of, numerous selected reagents from a mass storage arrangement. According to one embodiment, an array of reagent dispensers is supported over a movable platform assembly. The platform assembly aligns a designated receiving receptacle under a selected dispenser of the array so that a respective reagent can be dispensed therein. Advantageously, the apparatus and process can be carried out under the control of a programmed computer.