Abstract:
A surface mounted integrated circuit die package includes a group of peripheral leads extending laterally outwardly from the perimeter of the package and also includes an array of solder balls on the bottom of the package. The arrangement provides for a greater number of input/output connections to a die package by utilizing both peripheral leads and a ball grid array without requiring increases in package size or a reduction in the width of electrically conductive interconnections.
Abstract:
An integrated circuit assembly includes a dielectric flex tape substrate defining a predetermined array of electrically conductive traces and an array of solder balls or solder columns electrically connected to the bottom surface of the flex tape substrate and the traces. An integrated circuit die having a series of input/output pads is supported on the substrate. In one embodiment, a plurality of electrically conductive leads are supported by the flex tape substrate in electrical isolation from and over the conductive traces. A first and second series of bonding wires electrically connect certain ones of the input/output terminals on the integrated circuit die to the electrically conductive leads and conductive traces, respectively. In other embodiments, one or more electrically isolated conductive layers are supported by the dielectric flex tape substrate over the traces and electrically conductive leads. The integrated circuit package assembly, in accordance with any of these embodiments, provides a very high density electrical interconnection arrangement for the integrated circuit die while retaining a small package footprint.
Abstract:
An integrated circuit assembly is disclosed herein. The assembly includes a dielectric substrate defining a predetermined array of electrically conductive traces and an array of solder balls electrically connected to the traces. An integrated circuit chip having a series of input/output pads is supported on the substrate. In one embodiment, a plurality of leadframe leads are supported by the substrate in electrical isolation from and over the conductive traces. First and second series of bonding wires electrically connect certain ones of the input/output pads on the IC chip to the leadframe leads and conductive traces. In other embodiments, one or more electrically isolated conductive layers are supported by the dielectric substrate over the traces and leadframe leads. The integrated circuit assembly, in accordance with any of these embodiments, provides a very high density electrical interconnection arrangement for the IC chip while retaining a small package footprint.
Abstract:
A packaged semiconductor device, leadframe for making same, and method of mounting same to a printed circuit board are described. The device has a body, and a plurality of leads extending from the body. One or more alignment features are formed on the exterior of the package body, for maintaining precise alignment of the device with respect to a printed wiring board. The alignment feature is a tab formed as part of portion of the leadframe external to the package body. The tab may have various shapes, and may be provided with a hole for registering with a pin on an underlying substrate, such as a printed wiring board. The pin and the tab may be electrically connected.
Abstract:
A semiconductor device includes vertical placement part for mounting the semiconductor device on a surface of a circuit board in a vertical position, and a connection part for making electrical connections between the circuit board and a semiconductor element. A stage is provided on which the semiconductor element is placed. The stage has supporting members causing the semiconductor device to vertically stand on the circuit board. Wiring boards, stacked on a side of the stage on which the semiconductor element is placed, have windows in which the semiconductor element is located. The vertical placement part includes wiring lines extending between edges of the wiring boards facing the circuit board and peripheries of the windows. The wiring lines have ends located in the vicinity of the edges of the wiring boards and have a shape enabling the semiconductor device to be mounted on the circuit board.
Abstract:
An integrated circuit assembly is disclosed herein. The assembly includes a dielectric substrate defining a predetermined array of electrically conductive traces and an array of solder balls electrically connected to the traces. An integrated circuit chip having a series of input/output pads is supported on the substrate. In one embodiment, a plurality of leadframe leads are supported by the substrate in electrical isolation from and over the conductive traces. First and second series of bonding wires electrically connect certain ones of the input/output pads on the IC chip to the leadframe leads and conductive traces. In other embodiments, one or more electrically isolated conductive layers are supported by the dielectric substrate over the traces and leadframe leads. The integrated circuit assembly, in accordance with any of these embodiments, provides a very high density electrical interconnection arrangement for the IC chip while retaining a small package footprint.
Abstract:
A semiconductor device includes at least one semiconductor element contained in a casing, with main terminals and auxiliary terminals drawn from the semiconductor electrodes disposed on the upper face of the casing. The main terminals and the auxiliary terminals are arranged on the same plane at the same height without disposing partitions between the terminals so that the devices can be mounted on a printed wiring board on which the necessary conductor patterns for the main circuit have already been formed. In an alternative embodiment, the main terminals are arranged at a level slightly higher than the auxiliary terminals with the auxiliary terminals being surrounded by a supporting guide.
Abstract:
An electrical connector has first terminals which are surface mounted to respective sides of a substrate and second terminals which extend through an edge surface of the substrate to make electrical connection to an opening provided in the substrate. As the connector is mated to the edge of the substrate, the connector occupies a minimal space on the substrate.
Abstract:
A semiconductor device includes a semiconductor chip mounted in a resin package body. A plurality of interconnection leads are provided on the resin package body along a lower edge thereof and project outwardly from the lower edge. A heat dissipation lead is connected to the resin package body for dissipating heat generated by the semiconductor chip. The heat dissipation lead includes a plate of a heat conducting material having a stage part and a heat sink part, wherein the stage part is held inside the resin package body and supports the semiconductor chip thereon. The heat sink part projects outwardly from the resin package body and includes a part that extends in a downward direction. The heat sink part has a lower edge that is formed at a level substantially flush with the outer lead part of the interconnection leads such that the semiconductor device is held upright, when placed on a substrate, by the outer lead part of the interconnection leads and by the lower edge of the heat sink part of the heat dissipation lead.
Abstract:
An electrical connector has first terminals which are surface mounted to respective sides of a substrate and second terminals which extend through an edge surface of the substrate to make electrical connection to an opening provided in the substrate. As the connector is mated to the edge of the substrate, the connector occupies a minimal space on the substrate.