Abstract:
A molded tape ball grid array package includes a molding compound and a tape substrate having a top surface for mounting a die thereon, a bottom surface for attaching solder balls, and vias for forming connections between the solder balls and the die wherein the molding compound surrounds the die and the tape substrate.
Abstract:
An electrostatic protected integrated circuit (IC) substrate and a method of making an integrated circuit package with the electrostatic protected IC substrate includes an IC substrate, having a plurality of electrical traces formed on the top of the IC substrate with the electrical traces extending from an IC chip mounting area near the center to the periphery of the IC substrate. Electrically shorting the electrical traces together with a conductive material such as conductive tape or epoxy, thereby, protecting the IC substrate against the accumulation of static charges during the assembly of the IC chip on the IC substrate. The IC chip is mounted in the mounting area on the IC substrate and the conductive material is removed before final testing.
Abstract:
A surface mounted integrated circuit die package includes a group of peripheral leads extending laterally outwardly from the perimeter of the package and also includes an array of solder balls on the bottom of the package. The arrangement provides for a greater number of input/output connections to a die package by utilizing both peripheral leads and a ball grid array without requiring increases in package size or a reduction in the width of electrically conductive interconnections.
Abstract:
A method for mounting an integrated circuit includes a plurality of solder balls arrayed on the bottom surface of a package of the integrated circuit on a circuit board. These solder balls provide for surface mounting of the integrated circuit to a circuit board by solder reflow. The array of solder balls can be planarized so that each of the plural solder balls participate in defining a truly planar solder ball contact array for the integrated circuit package. Methods of manufacturing the integrated circuit with a package having planarized solder balls in an array dependent from a bottom surface thereof are set forth. The truly planarized solder ball contact array of the integrated circuit package affords nearly absolute reliability in forming of surface-mount electrical connections between the integrated circuit package and the circuit board on which the package is to mount.
Abstract:
An integrated circuit includes a plurality of solder balls arrayed on the bottom surface of a package of the integrated circuit. These solder balls provide for surface mounting of the integrated circuit to a circuit board by solder reflow. The array of solder balls can be planarized so that each of the plural solder balls participate in defining a truly planar solder ball contact array for the integrated circuit package. Methods of manufacturing the integrated circuit with a package having planarized solder balls in an array dependent from a bottom surface thereof are set forth. The truly planarized solder ball contact array of the integrated circuit package affords nearly absolute reliability in forming of surface-mount electrical connections between the integrated circuit package and the circuit board on which the package is to mount. Additionally, the planarized solder ball contacts locally compensate individually for warpage of the integrated circuit package by variation in the individual dimensions of dependency of each solder ball below the bottom surface of the package.
Abstract:
A method of electroplating a high density integrated circuit (IC) substrate using a removable plating bus including the steps of providing an IC substrate made of nonconductive material having a plurality of conductive traces formed on its surface. Attaching a removable plating bus to the IC substrate, covering the plurality of conductive traces. Forming through holes (or vias) in predetermined locations. The holes going through the removable plating bus and IC substrate, exposing edges of selected conductive traces in the holes. Plating the through holes with a conductive material (such as copper) that electrically connects the removable plating bus to the exposed edges of the traces in the holes. Coating the IC substrate (including the removable plating bus) with plating resist and selectively removing portions of the removable plating bus, along with the plating resist, to expose selected areas of traces on the IC substrate that require plating. Electroplating the exposed trace areas on the IC substrate with conductive material (such as gold or nickel) by using the removable plating bus as the electrical connection to the exposed metal traces and removing the removable plating bus after electroplating is finished.
Abstract:
A method for mounting an integrated circuit includes a plurality of solder balls arrayed on the bottom surface of a package of the integrated circuit onto to a circuit board. These solder balls provide for surface mounting of the integrated circuit to a circuit board by solder reflow. The array of solder balls can be planarized so that each of the plural solder balls participate in defining a truly planar solder ball contact array for the integrated circuit package. Methods of manufacturing the integrated circuit with a package having planarized solder balls in an array dependent from a bottom surface thereof are set forth. The truly planarized solder ball contact array of the integrated circuit package affords nearly absolute reliability in forming of surface-mount electrical connections between the integrated circuit package and the circuit board on which the package is to mount. Additionally, the planarized solder ball contacts locally compensate individually for warpage of the integrated circuit package by variation in the individual dimensions of dependency of each solder ball below the bottom surface of the package.
Abstract:
An integrated circuit package includes a heatspreader which is formed to have a centrally disposed recessed portion between planar surfaces, and flex tape extending from the planar surfaces into the centrally disposed surface. A semiconductor chip is mounted on the centrally disposed surface between the flex tape, and wire bonds interconnect bonding pads on the chip to the metal interconnect patterns on the flex tape. Plastic molding or epoxy is then applied to encapsulate the chip and wire bonding in the centrally disposed planar surface of the heat spreader. The package is then readily mounted on a motherboard using solder balls.
Abstract:
A surface mounted integrated circuit die package includes a group of peripheral leads extending laterally outwardly from the perimeter of the package and also includes an array of solder balls on the bottom of the package. The arrangement provides for a greater number of input/output connections to a die package by utilizing both peripheral leads and a ball grid array without requiring increases in package size or a reduction in the width of electrically conductive interconnections.
Abstract:
A technique for providing partially and fully overmolded semiconductor packages is described which prevents delamination (detachment) of the molding compound from the substrate by allowing the molding compound to flow through holes in the substrate and forming it into rivet-like anchors on the opposite side of the substrate. Various shapes of rivet-like anchors are described. Different embodiments provide for the formation of molded standoffs and locating pins integral to the anchor structures.