Abstract:
A capacitor includes a capacitor part formed of a dielectric film sandwiched by a pair of electrodes and a support body formed of a film of an organic polysilane. The support body is provided so as to support the capacitor part thereon.
Abstract:
One embodiment of the present invention provides advice for providing a low noise power supply package to an integrated circuit comprising a semiconductor die, input/output power supply terminals, and an array of embedded ceramic capacitors selected from discrete, planar and combinations thereof wherein said capacitors are placed in the locations selected from within the perimeter of the shadow of the semiconductor die, partially within the perimeter of the shadow of the semiconductor die, near the perimeter of the shadow of the semiconductor die, and combinations thereof.
Abstract:
An embedded passive structure, its method of formation, and its intergration onto a substrate during fabrication are disclosed, In one embodiment the embedded passive structure is a thin film capacitor (TFC) formed using a thin film laminate that has been mounted onto a substrate. The TFC's capacitor dielectric and/or lower electrode layers are patterned in such a way as to reduce damage and improve cycle time. In one embodiment, the capacitor dielectric has a high dielectric constant and the substrate is an organic packaging substrate.
Abstract:
A method of embedding thick-film fired-on-foil capacitors includes entirely covering the dielectric with an encapsulating electrode to avoid cracking in the dielectric due to shrinkage and temperature coefficient of expansion differences between the electrode and dielectric.
Abstract:
A thin-film capacitor assembly includes a first metal bottom electrode, a dielectric layer, a second metal etch-stop layer, and a subsequent metal top electrode. The first metal bottom electrode is in contact with the dielectric layer. The second metal etch-stop layer is in contact with the dielectric layer. The subsequent metal top electrode is in contact with the second metal etch-stop layer. Processing of the thin-film capacitor assembly includes totally removing a stiffener after assembling the first metal bottom electrode as a layer to the dielectric layer and the second metal etch-stop layer. The stiffener is removed from above and on the second metal etch-stop layer. The thin-film capacitor assembly is laminated to a mounting substrate.
Abstract:
The present invention provides a manufacturing method capable of mass production of a thin film decoupling capacitor provided with a capacitor circuit on the surface of a film tape carrier form of a polyimide resin or the like. For the purpose of achieving the above described object, there is provided a film carrier tape with a capacitor circuit, including a wiring pattern on the surface of a resin film including a plurality of sprocket holes on each of the two edges, wherein the resin film includes solder ball land holes and the wiring pattern includes a capacitor circuit having a structure in which a dielectric layer is disposed between an upper electrode and a lower electrode. As the method for manufacturing the aforementioned film carrier tape, there is provided such a method for semicontinuously manufacturing the film carrier tape concerned in the state of tape as applied to manufacturing conventional TAB products.
Abstract:
A method of forming printed wiring boards having embedded thick-film capacitors includes covering capacitor layers with a protective coating prior to etching to prevent etching solutions from contacting with and damaging the capacitor layers and forming vias directly between the capacitor electrodes and the board circuitry.
Abstract:
A fabricating method of a wiring board provided with passive elements is disclosed. The fabricating method includes coating one or both of resistive paste and dielectric paste on at least any one of first surfaces of a first metal foil and a second metal foil each of which has a first surface and a second surface; arranging an insulating board having thermo-plasticity and thermo-setting properties so as to face the first surface of the first metal foil, and arranging the first surface side of the second metal foil so as to face a surface different from a surface to which the first metal foil faces of the insulating board; forming a double-sided wiring board by stacking, pressurizing and heating the arranged first metal foil, insulating board, and second metal foil, and thereby integrating these; and patterning the first metal foil and/or the second metal foil.
Abstract:
In a multilayer wiring board comprising a core board, and a wiring layer and an electrically insulating layer that are stacked on one surface of said core board, a thermal expansion coefficient of said core board in XY directions falls within a range of 2 to 20 ppm, a core member for said core board is a core member selected from silicon, ceramics, glass, a glass-epoxy composite, and metal, said core board is provided with a plurality of through holes that are made conductive between the front and the back by a conductive material, and a capacitor is provided on one surface of said core board, wherein said capacitor comprises an upper electrode being the conductive material in said through hole, and a lower electrode disposed so as to confront said upper electrode via a dielectric layer.
Abstract:
A process of fabricating a passive electrical component, such as a resistor, a capacitor, or an inductor, is provided. The process includes the step of ink-jet printing at least one electronic ink onto a substrate in a predetermined pattern. The step of ink-jet printing may include the steps of: a) selecting at least one electronic ink having at least one electrical characteristic when cured; b) determining a positional layout for a plurality of droplets of the at least one electronic ink such that, when the at least one electronic ink has been cured, the positional layout provides a desired response for the electrical component; c) printing each of the plurality of droplets of the at least one electronic ink onto the substrate according to the positional layout using an ink-jet printing process; and d) curing the at least one electronic ink.