Abstract:
An ion implantation device with a dual pumping mode and method thereof for use in producing atomic or molecular ion beams are disclosed. In one particular exemplary embodiment, an ion implantation apparatus is provided for controlling a pressure within an ion beam source housing corresponding to an ion beam species being produced. The ion implantation apparatus may include the ion beam source housing comprising a plurality of species for use in ion beam production. A pumping section may also be included for evacuating gas from the ion beam source housing. A controller may further be included for controlling the pumping section according to pumping parameters corresponding to a species of the plurality of species being used for ion beam production.
Abstract:
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 μm, with inter-aperture spacings of 12 μm. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Abstract:
An ion source is provided which is capable of generating and/or emitting an ion beam which may be used to deposit a layer on a substrate or to perform other functions. In certain example embodiments, a magnet yoke assembly used in the ion source is provided, and the magnet yoke assembly includes a lower yoke and an upper yoke. At least one magnet is disposed between the lower yoke and the upper yoke, with the at least one magnet having a substantially rectangular shape in certain example embodiments. The at least one magnet may be adhered to the lower yoke and/or the upper yoke.
Abstract:
Various aspects of the invention provide improved approaches and methods for efficiently: Vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system; Delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source; Ionizing the decaborane into a large fraction of B10Hx+; Preventing thermal dissociation of decaborane; Limiting charge-exchange and low energy electron-induced fragmentation of B10Hx+; Operating the ion source without an arc plasma, which can improve the emittance properties and the purity of the beam; Operating the ion source without use of a strong applied magnetic field, which can improve the emittance properties of the beam; Using a novel approach to produce electron impact ionizations without the use of an arc discharge, by incorporation of an externally generated, broad directional electron beam which is aligned to pass through the ionization chamber to a thermally isolated beam dump; Providing production-worthy dosage rates of boron dopant at the wafer; Providing a hardware design that enables use also with other dopants, especially using novel hydride, dimer-containing, and indium- or antimony-containing temperature-sensitive starting materials, to further enhance the economics of use and production worthiness of the novel source design and in many cases, reducing the presence of contaminants; Matching the ion optics requirements of the installed base of ion implanters in the field; Eliminating the ion source as a source of transition metals contamination, by using an external and preferably remote cathode and providing an ionization chamber and extraction aperture fabricated of non-contaminating material, e.g. graphite, silicon carbide or aluminum; Enabling retrofit of the new ion source into the ion source design space of existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs; Using a control system in retrofit installations that enables retention of the installed operator interface and control techniques with which operators are already familiar; Enabling convenient handling and replenishment of the solid within the vaporizer without substantial down-time of the implanter; Providing internal adjustment and control techniques that enable, with a single design, matching the dimensions and intensity of the zone in which ionization occurs to the beam line of the implanter and the requirement of the process at hand; Providing novel approaches, starting materials and conditions of operation that enable the making of future generations of semiconductor devices and especially CMOS source/drains and extensions, and doping of silicon gates.
Abstract:
Various aspects of the invention provide improved approaches and methods for efficiently: Vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system; Delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source; Ionizing the decaborane into a large faction of B10Hx+; Preventing thermal dissociation of decaborane; Limiting charge-exchange and low energy electron-induced fragmentation of B10Hx+; Operating the ion source without an arc plasma, which can improve the emittance properties and the purity of the beam; Operating the ion source without use of a strong applied magnetic field, which can improve the emittance properties of the beam; Using a novel approach to produce electron impact ionizations without the use of an arc discharge, by incorporation of an externally generated, broad directional electron beam which is aligned to pass through the ionization chamber to a thermally isolated beam dump; Providing production-worthy dosage rates of boron dopant at the wafer; Providing a hardware design that enables use also with other dopants, especially using novel hydride, dimer-containing, and indium- or antimony-containing temperature-sensitive starting materials, to further enhance the economics of use and production worthiness of the novel source design and in many cases, reducing the presence of contaminants; Matching the ion optics requirements of the installed base of ion implanters in the field; Eliminating the ion source as a source of transition metals contamination, by using an external and preferably remote cathode and providing an ionization chamber and extraction aperture fabricated of non-contaminating material, e.g. graphite, silicon carbide or aluminum; Enabling retrofit of the new ion source into the ion source design space of existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs; Using a control system in retrofit installations that enables retention of the installed operator interface and control techniques with which operators are already familiar; Enabling convenient handling and replenishment of the solid within the vaporizer without substantial down-time of the implanter; Providing internal adjustment and control techniques that enable, with a single design, matching the dimensions and intensity of the zone in which ionization occurs to the beam line of the implanter and the requirement of the process at hand; Providing novel approaches, starting materials and conditions of operation that enable the making of future generations of semiconductor devices and especially CMOS source/drains and extensions, and doping of silicon gates.
Abstract:
Ion sources and methods for generating an ion beam with a controllable ion current density distribution. The ion source includes a discharge chamber and an electromagnet adapted to generate a magnetic field for changing a density distribution of the plasma inside the discharge chamber and, thereby, to change the ion current density distribution.
Abstract:
A method of implanting ions comprising generating C2B10Hx, ions from C2B10H12 and implanting the C2B10Hx, ions in a material. In some embodiments, the molecular weight of the C2B10Hx, ions is greater than 100 amu. In other embodiments, the molecular weight of the C2B10Hx, ions is approximately 132 to 144 amu or approximately 136 to 138 amu. An ion source is also disclosed comprising a chamber housing defining a chamber and a source feed gas supply configured to introduce C2B10H12 into the chamber, wherein the ion source is configured to ionize the source feed gas within the chamber into C2B10Hxions.
Abstract translation:一种植入离子的方法,包括产生C 2 H 2 H x H 2,从C 2 H 2 N 将12 H 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N 2离子注入到材料中。 在一些实施方案中,C 12 H 12 H 12 H 12的离子的分子量大于100amu。 在其它实施方案中,C 12 H 12 H 12离子的分子量为约132至144amu或约136至138amu 。 还公开了一种离子源,其包括限定腔室的腔室和构造成将C 2 H 2 H 12 H 12引入到 所述室,其中所述离子源被配置为将所述室内的所述源进料气体离子化为C 2 H 12 H 12 H 12。
Abstract:
An ion implanter includes a sample stage for setting a sample having a main surface, an ion generating section configured to generate a plurality of ions, the ion generating section including a container into which an ion source gas is introduced and a filament for emitting thermal electrons provided in the container, an implanting section configured to implants an ion beam containing the plurality of ions in the main surface of the sample, and a control section configured to control a position of the sample or a spatial distribution of electrons emitted from the filament so that a direction of eccentricity of a center of gravity of the ion beam coincides with a direction of a normal line of the main surface.