Abstract:
This invention relates to electronic device fabrication processes for making devices such as semiconductor wafers and resolves the fluorine loading effect in the reaction chamber of a HDP CVD apparatus used for forming dielectric layers in high aspect ratio, narrow width recessed features. The fluorine loading effect in the chamber is minimized and wafers are provided having less deposition thickness variations by employing the method using a hydrogen plasma treatment of the chamber and the substrate after the chamber has been used to grow a dielectric film on a substrate. After the hydrogen plasma treatment of the chamber, the chamber is treated with an etchant gas to etch the substrate. Preferably a hydrogen gas is then introduced into the chamber after the etching process and the process repeated until the fabrication process is complete. The wafer is then removed from the chamber and a new wafer placed in the chamber and the above fabrication process repeated.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
Plasma etch processes incorporating helium-based etch chemistries can remove dielectric a semiconductor applications. In particular, high density plasma chemical vapor etch-enhanced (deposition-etch-deposition) gap fill processes incorporating etch chemistries which incorporate helium as the etchant that can effectively fill high aspect ratio gaps while reducing or eliminating dielectric contamination by etchant chemical species.
Abstract:
Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
Abstract:
A low dielectric constant film having silicon-carbon bonds and dielectric constant of about 3.0 or less, preferably about 2.5 or less, is provided. The low dielectric constant film is deposited by reacting a cyclic organosilicon compound and an aliphatic organosilicon compound with an oxidizing gas while applying RF power. The carbon content of the deposited film is between about 10 and about 30 atomic percent excluding hydrogen atoms, and is preferably between about 10 and about 20 atomic percent excluding hydrogen atoms.
Abstract:
A method and apparatus for depositing a low dielectric constant film by plasma assisted copolymerization of p-xylylene and a comonomer having carbon-carbon double bonds at a constant RF power level from about 0W to about 100W or a pulsed RF power level from about 20W to about 160W. The copolymer film has a dielectric constant from about 2.2 to about 2.5. Preferred comonomers include tetravinyltetramethylcyclotetrasiloxane, tetraallyloxysilane, and trivinylmethylsilane. The copolymer films include at least 1% by weight of the comonomer.
Abstract:
A method for depositing silicon oxide layers having a low dielectric constant by reaction of an organosilicon compound and a hydroxyl forming compound at a substrate temperature less than about 400° C. The low dielectric constant films contain residual carbon and are useful for gap fill layers, pre-metal dielectric layers, inter-metal dielectric layers, and shallow trench isolation dielectric layers in sub-micron devices. The hydroxyl compound can be prepared prior to deposition from water or an organic compound. The silicon oxide layers are preferably deposited at a substrate temperature less than about 40° C. onto a liner layer produced from the organosilicon compound to provide gap fill layers having a dielectric constant less than about 3.0.
Abstract:
A method and apparatus for forming thin copolymer layers having low dielectric constants on semiconductor substrates includes in situ formation of p-xylylenes, or derivatives thereof, from solid or liquid precursors such as cyclic p-xylylene dimer, p-xylene, 1,4-bis(formatomethyl)benzene, or 1,4-bis(N-methyl-aminomethyl)benzene. P-xylylene is copolymerized with a comonomer having labile groups that are converted to dispersed gas bubbles after the copolymer layer is deposited on the substrate. Preferred comonomers comprise diazocyclopentadienyl, diazoquinoyl, formyloxy, or glyoxyloyloxy groups.
Abstract:
The present disclosure includes a method for control of a film composition with co-sputter physical vapor deposition. In one implementation, the method includes: positioning first and second PVD guns above a substrate, selecting first and second collimators having first and second sets of physical characteristics, positioning the first and second collimators between the first and second PVD guns and the substrate, sputtering at least one material from the first and second PVD guns through the first and second collimators upon application of a first power and second power, wherein the first PVD gun has a first deposition rate from the first collimator at the first power, and the second PVD gun has a second deposition rate from the second collimator at the second power.