Abstract:
A method for generating additional information for guaranteeing seamless playback of data streams, a recording medium for storing the information, and recording, editing and/or playback apparatus using the same are provided. The method generates additional information for guaranteeing seamless playback. The method includes a step of generating data stream information for each of two or more data streams, which includes packet data to which information on an arrival time of the respective packet data is added. The data stream information includes seamless playback information, which indicates whether a corresponding data stream is to be seamlessly reproduced after playback of a preceding data stream, and/or seamless time control information for controlling an output time of the corresponding data stream to be seamlessly reproduced. Therefore, data streams can be seamlessly reproduced without interruption between the data streams, by using data stream information which includes seamless information and/or seamless time control information including reference time, an offset value and/or a gap length value. Especially, by using the information structure, even if data streams are edited, the data streams can be seamlessly reproduced in such a simple manner of just modifying data stream information, instead of directly rewriting or modifying arrival time information which is added to packet data.
Abstract:
A reproducing apparatus and method includes a reproducing unit to reproduce mainstream data and sub audio data separately added in the mainstream data, wherein the reproducing unit comprises a counter used in reproducing the sub audio data. Accordingly, it is possible to more naturally reproduce still image data, such as a browsable slide show, to which sub audio data is additionally included, thus preventing an interruption in reproduction of the sub audio data even during a forward or reverse play.
Abstract:
An information storage medium including graphic data and presentation information, and an apparatus and method of processing the graphic data are provided. The information storage medium includes the graphic data, page composition information which defines page composition of the graphic data, and the presentation information indicating when graphic screen data, which is composed with reference to the page composition information of the graphic data, is output to a display screen. Therefore, a graphic object is reusable in graphic data processing, and accordingly, a time taken to process the graphic data is reducible and memory area may be saved.
Abstract:
A semiconductor device comprises a top surface having a first contact, a bottom surface having a second contact, a via hole penetrating a substrate, an insulation layer structure on a sidewall of the via hole, the insulation layer structure having an air gap therein, a through electrode having an upper surface and a lower surface on the insulation layer structure, the through electrode filling the via hole and the lower surface being the second contact, and a metal wiring electrically connected to the upper surface of the through electrode and electrically connected to the first contact.
Abstract:
A distributed packet processing apparatus capable of distributing packet load across a plurality of packet processing engines is provided. The distributed packet processing apparatus includes a plurality of processing engines each configured to process allocated packets, a first tag generating unit configured to allocate an input packet to a processing engine, which has a processing engine index corresponding to a tag index for the input packet, among the plurality of processing engines, a second tag generating unit configured to calculate a tag index for an output packet, and an index conversion unit configure to convert the tag index for the output packet to one processing engine index among a plurality of processing indexes for the plurality of the processing engines and allocates the output packet to a processing engine having the one processing engine such that loads are distributed among the plurality of processing engines.
Abstract:
In methods of manufacturing a semiconductor device, a substrate having a first surface and a second surface opposite to the first surface is prepared. A sacrificial layer pattern is formed in a region of the substrate that a through electrode will be formed. The sacrificial layer pattern extends from the first surface of the substrate in a thickness direction of the substrate. An upper wiring layer is formed on the first surface of the substrate. The upper wiring layer includes a wiring on the sacrificial layer pattern. The second surface of the substrate is partially removed to expose the sacrificial layer pattern. The sacrificial layer pattern is removed from the second surface of the substrate to form an opening that exposes the wiring. A through electrode is formed in the opening to be electrically connected to the wiring.
Abstract:
Provided is a media deposit apparatus including: a deposit transfer portion providing a deposit circulation path of media deposited via a media deposit portion; a temporary transfer portion providing a temporary circulation path that contacts with the deposit circulation path to transfer the media to a temporary stack portion, and including a temporary stack gate, provided between the deposit circulation path and the temporary circulation path, to selectively convert a path of media to the temporary circulation path; and a media transfer portion providing a media transfer path that contacts with the temporary circulation path to transfer the media to a media storage portion, and including a media storage gate, provided between the temporary circulation path and the media transfer path, to selectively convert the path of media to the media transfer path. Accordingly, it is possible to simplify a media transfer structure and to enhance a media transfer efficiency.
Abstract:
An information storage medium including graphic data and presentation information, and an apparatus and method of processing the graphic data are provided. The information storage medium includes the graphic data, page composition information which defines page composition of the graphic data, and the presentation information indicating when graphic screen data, which is composed with reference to the page composition information of the graphic data, is output to a display screen. Therefore, a graphic object is reusable in graphic data processing, and accordingly, a time taken to process the graphic data is reducible and memory area may be saved.
Abstract:
A method for forming a light guide layer with improved transmission reliability in a semiconductor substrate, the method including forming a trench in the semiconductor substrate, forming a cladding layer and a preliminary light guide layer in the trench such that only one of opposite side end portions of the preliminary light guide layer is in contact with an inner sidewall of the trench, and performing a thermal treatment on the substrate to change the preliminary light guide layer into the light guide layer.
Abstract:
There is provided relaxation oscillator. The relaxation oscillator includes: a ramp wave generator generating ramp waves by a complementary operation between a first capacitor module charged and discharged according to a first switching signal and a second capacitor module charged and discharged according to a second switching signal; a negative feedback circuit unit generating a compensation voltage for compensating errors with reference voltage by being fedback with the ramp waves; and a switching signal generator generating the first switching signal controlling the charging and discharging of the first capacitor module and the second switching signal controlling the charging and discharging of the second capacitor module from the compensation voltage and the ramp waves. As a result, the present invention can generate ramp waves having a stable frequency while preventing a frequency from being changed due to a delay or an offset of the comparator.