Abstract:
In a method for cleaning for cleaning metallic ion contamination, and especially copper, from wafer containers, the containers are loaded into a cleaning apparatus. The containers are sprayed with a dilute chelating agent solution. The chelating agent solution removes metallic contamination from the containers. The containers are then rinsed with a rinsing liquid, such as deionized water and a surfactant. The containers are then dried, preferably by applying heat and/or hot air movement.
Abstract:
An automated processing system for processing flat workpieces, such as semiconductor wafers, operates by loading the workpieces into a first carrier. A process robot is adapted to engage external features of the first carrier, for lifting and moving the first carrier within the system. The process robot delivers the first carrier holding the wafers of a first size to a process chamber. The first carrier is secured in the process chamber by one or more of the external features of the first carrier. The first carrier has interior features, such as combs and slots, for holding wafers of a different first size. A second carrier has external features which are the same as the external features of the first carrier. The second carrier has inside features which are dimensioned to hold wafers of a second size, different from the first size. The automated processing system can accordingly handle or operate with both the first and second carriers, and thereby process workpieces having different sizes.
Abstract:
In a method for cleaning for cleaning metallic ion contamination, and especially copper, from wafer containers, the containers are loaded into a loader of a cleaning apparatus. The containers are sprayed with a dilute chelating agent solution, while the rotor is spinning. The chelating agent solution removes metallic contamination from the containers. The containers are then sprayed with a rinsing liquid, such as deionized water and a surfactant while the rotor is spinning and heat is applied. The containers are then dried by applying heat, hot air movement and spinning the rotor.
Abstract:
Workpieces requiring low levels of contamination, such as semiconductor wafers, are loaded into a rotor within a process chamber. The process chamber has a horizontal drain opening in its cylindrical wall. The chamber is closed via a door. A process or rinsing liquid is introduced into the chamber. The liquid rises to a level so that the workpieces are immersed in the liquid. The chamber slowly pivots or rotates to move the drain opening down to the level of the liquid. The liquid drains out through the drain opening. The drain opening is kept near the surface of the liquid to drain off liquid at a uniform rate. An organic solvent vapor is introduced above the liquid to help prevent droplets of liquid from remaining on the workpieces as the liquid drains off. The rotor spins the workpieces to help to remove any remaining droplets by centrifugal force.
Abstract:
A system for processing a workpiece includes an inner chamber pivotably supported within an outer chamber. The inner chamber has an opening to allow liquid to drain out. A motor pivots the inner chamber to bring the opening at or below the level of liquid in the inner chamber. As the inner chamber turns, liquid drains out. Workpieces within the inner chamber are supported on a holder or a rotor, which may be fixed or rotating. Multi processes may be performed within the inner chamber, reducing the need to move the workpieces between various apparatus and reducing risk of contamination.
Abstract:
In a method for rinsing and drying a semiconductor workpiece in a micro-environment, the workpiece is placed into a rinser/dryer housing. The rinser/dryer housing is rotated by a rotor motor. The rinser/dryer housing defines a substantially closed rinser/dryer chamber. Rinsing and drying fluids are distributed across at least one face of the semiconductor workpiece by the action of centrifugal force generated during rotation of the housing. A fluid supply system is connected to sequentially supply a rinsing fluid followed by a drying fluid to the chamber as the housing is rotated.
Abstract:
A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
Abstract:
A method for use in the manufacture of a microelectronic device is set forth. The method include to a first step in which a workpiece including exposed metallized surfaces and residues is provided. The workpiece, including the exposed metallized surfaces, is then treated with an alkaline, water-based solution containing one or more components that form an additive layer of an anti-corrosive compound on the exposed metallized surfaces. The solution reacts with the residues and assists in removing them from the workpiece. When the surfaces are principally include of aluminum, the solution may be include of DI water, an ammonium hydroxide based component, such as TMAH, silicic acid, and aluminum hydroxide.
Abstract:
Methods for depositing a metal into a micro-recessed structure in the surface of a microelectronic workpiece are disclosed. The methods are suitable for use in connection with additive free as well as additive containing electroplating solutions. In accordance with one embodiment, the method includes making contact between the surface of the microelectronic workpiece and an electroplating solution in an electroplating cell that includes a cathode formed by the surface of the microelectronic workpiece and an anode disposed in electrical contact with the electroplating solution. Next, an initial film of the metal is deposited into the micro-recessed structure using at least a first electroplating waveform having a first current density. The first current density of the first electroplating waveform is provided to enhance the deposition of the metal at a bottom of the micro-recessed structure. After this initial plating, deposition of the metal is continued using at least a second electroplating waveform having a second current density. The second current density of the second electroplating waveform is provided to assist in reducing the time required to substantially complete filling of the micro-recessed structure.
Abstract:
An apparatus for processing a workpiece in a micro-environment includes a workpiece housing connected to a motor for rotation. The workpiece housing defines a substantially closed processing chamber therein in which one or more processing fluids are distributed across at least one face of the workpiece by centrifugal force generated during rotation of the housing. A dividing member at the edge of the spinning workpiece separates flow of fluids off of the top and bottom surfaces of the workpiece.