Abstract:
The present invention provides systems and methods for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device.
Abstract:
A wire embedding system and methods are presented. A wire is embedded in a substrate at predetermined locations in a series of sequential embedding instances using heat and pressure. The heat and pressure are removed from the wire in between the series of sequential embedding instances.
Abstract:
A three-dimensional electronic, biological, chemical, thermal management, or electromechanical apparatus and method of configuring such an apparatus. In an example embodiment, an apparatus can include a substrate and one or more layers of a three-dimensional structure configured on and/or from the substrate. The three-dimensional structure includes one or more internal cavities configured by an extrusion-based additive manufacturing system enhanced with a range of secondary embedding processes. The three-dimensional structure can be configured with one or more structural integrated metal objects spanning one or more of the internal cavities of the three-dimensional structure for enhanced electromagnetic properties.
Abstract:
A three-dimensional electronic, biological, chemical, thermal management, or electromechanical apparatus and method thereof. One or more layers of a three-dimensional structure are deposited on a substrate. The three-dimensional structure is configured to include one or more internal cavities using, an extrusion-based additive manufacturing system enhanced with a range of secondary embedding processes. The three-dimensional structure includes one or more structural integrated metal objects spanning the one or more of the internal cavities of the three-dimensional structure for enhanced electromagnetic properties and bonded between two or more other metal objects located at the same layer or different layers of the three-dimensional structure.
Abstract:
A three-dimensional electronic, biological, chemical, thermal management, or electromechanical apparatus and method of configuring such an apparatus. In an example embodiment, an apparatus can include a substrate and one or more layers of a three-dimensional structure configured on and/or from the substrate. The three-dimensional structure includes one or more internal cavities configured by an extrusion-based additive manufacturing system enhanced with a range of secondary embedding processes. The three-dimensional structure can be configured with one or more structural integrated metal objects spanning one or more of the internal cavities of the three-dimensional structure for enhanced electromagnetic properties.
Abstract:
A method for embedding a line in a substrate. A line embedding head in positioned relative to a surface of the substrate. The line from an output port in the line embedding head is output at an angle relative to the embedding head such that the line is embedded in the substrate.
Abstract:
A multi-layered 3D printed laser direct structuring method and apparatus for electrical interconnect and antennas. 3D printed components can be configured with structurally integrated metal connections (e.g., bulk highly conductive metal) that traverse multiple layers (some embedded and others external) of a structure fabricated using an additive manufacturing system enhanced with an iterative laser activated plating processes, which includes a novel well side-wall vertical interconnect.
Abstract:
A multi-layered 3D printed laser direct structuring method and apparatus for electrical interconnect and antennas. 3D printed components can be configured with structurally integrated metal connections (e.g., bulk highly conductive metal) that traverse multiple layers (some embedded and others external) of a structure fabricated using an additive manufacturing system enhanced with an iterative laser activated plating processes, which includes a novel well side-wall vertical interconnect.
Abstract:
The present invention provides systems and methods for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device.
Abstract:
The present invention provides systems and methods for embedding a filament or filament mesh in a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device by providing at least a first layer of a substrate material, and embedding at least a portion of a filament or filament mesh within the first layer of the substrate material such the portion of the filament or filament mesh is substantially flush with a top surface of the first layer and a substrate material in a flowable state is displaced by the portion of the filament and does not substantially protrude above the top surface of the first layer, allowing the continuation of an additive manufacturing process above the embedded filament or filament mesh. A method is provided for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device.