Abstract:
A wire-bonding substrate includes a curvilinear wire-bond pad. The curvilinear wire-bond pad is used in reverse wire bonding to couple a die with the substrate. A curvilinear wire-bond pad is also disclosed that is located directly above the via in the substrate. A wire-bonding substrate includes a first wire-bond pad and a first via that is disposed directly below the first wire-bond pad in the wire-bonding substrate. A package is includes a chip stack with a total die-side characteristic dimension, and a total substrate-side characteristic dimension that is smaller than the total die-side characteristic dimension. A computing system includes the curvilinear wire-bond pad.
Abstract:
A method of forming a leadframe package, a leadframe package formed according to the method, and a system incorporating the leadframe package. The leadframe package includes: a metallization layer comprising a paddle portion and a contact portion including contact leads; a die mounted onto the paddle portion; wirebonds connected between the die and respective ones of the contact leads; an overmold encapsulating the die, the paddle portion, the contact leads and the wirebonds; and a stiffening element encapsulated in the overmold and unconnected to electrical pathways within the leadframe package.
Abstract:
Embodiments of the invention provide a microelectronic device having a heat spreader positioned between a chip and substrate to which the chip is electrically connected. For one embodiment of the invention, the heat spreader is a thermal slug having a coefficient of thermal expansion approximately equal to the coefficient of thermal expansion of the chip.
Abstract:
A device includes a folded flex substrate. A memory die is connected to a first side of the folded flex substrate. A logic die is connected to a second side of the folded flex substrate. A trace routing pattern of source voltage signals is identical to a trace routing pattern of collector voltage signals.
Abstract:
In one embodiment, a package-to-package stack is assembled comprising a first integrated circuit package, and a second integrated circuit package which are mechanically and electrically connected using an interposer and a substrate folded around the interposer. Other embodiments are described and claimed.
Abstract:
A microelectronic assembly is provided, having redistribution conductors that are formed over a microelectronic die of the assembly instead of through a substrate to which the microelectronic die is mounted. A redistribution conductor is formed by a pair of contacts on the die and a conductive portion connecting the contacts to one another. A wirebonding wire is attached to each contact. One of the wirebonding wires may be used to connect to a terminal on the substrate, a terminal on another die, or to another contact on the same die.