摘要:
A power module includes a substrate; a conductive path layer formed on the substrate with a specific pattern as an inductor; a connection layer being formed on the substrate and electrically connected to a first terminal of the inductor; and a first transistor, electrically mounted on the substrate through the connection layer.
摘要:
A chip package structure and a method for forming the chip package structure are disclosed. At least a block is formed on a surface of a cover, the cover is mounted on a substrate having a sensing device formed thereon for covering the sensing device, and the block is disposed between the cover and the sensing device. In the present invention, the block is mounted on the cover, there is no need to etch the cover to form a protruding portion, and thus the method of the present invention is simple and has low cost.
摘要:
Embodiments of the present invention provide a capacitive coupler packaging structure including a substrate with at least one capacitor and a receiver formed thereon, wherein the at least one capacitor at least includes a first electrode layer, a second electrode layer and a capacitor dielectric layer therebetween, and the first electrode layer is electrically connected to the receiver via a solder ball. The capacitive coupler packaging structure also includes a transmitter electrically connecting to the capacitor.
摘要:
An embodiment of the present invention provides a manufacturing method of an interposer including: providing a semiconductor substrate having a first surface, a second surface and at least a through hole connecting the first surface to the second surface; electrocoating a polymer layer on the first surface, the second surface and an inner wall of the through hole; and forming a wiring layer on the electrocoating polymer layer, wherein the wiring layer extends from the first surface to the second surface via the inner wall of the through hole. Another embodiment of the present invention provides an interposer.
摘要:
A package structure which includes a non-conductive substrate, a conductive element, a passivation, a jointed side, a conductive layer, a solder and a solder mask is disclosed. The conductive element is disposed on a surface of the non-conductive substrate and consists of a passive element and a corresponding circuit. The passivation completely covers the conductive element and the non-conductive substrate so that the conductive element is sandwiched between the passivation and the non-conductive substrate. The conductive layer covers the jointed side which exposes part of the corresponding circuit, extends beyond the jointed side and is electrically connected to the corresponding circuit. The solder mask which completely covers the jointed side and the conductive layer selectively exposes the solder which is disposed outside the jointed side and electrically connected to the conductive layer.
摘要:
A manufacturing-process equipment has a platform assembly, a measurement feedback assembly and a laser-working assembly. The platform assembly has a base and a hybrid-moving platform. The base has a mounting frame. The hybrid-moving platform is mounted on the base and has a long-stroke moving stage and a piezo-driven micro-stage. The long-stroke moving stage has a benchmark set and a driving device. The piezo-driven micro-stage is connected to the long-stroke moving stage and has a working platform. The measurement feedback assembly is securely mounted on the platform assembly and has a laser interferometer, a reflecting device and a signal-receiving device. The laser-working assembly is mounted on the platform assembly, is electrically connected to the measurement feedback assembly and has a laser direct-writing head, a controlling interface device and a positioning interface device.
摘要:
A chip package structure and a method for forming the chip package structure are disclosed. At least a block is formed on a surface of a cover, the cover is mounted on a substrate having a sensing device formed thereon for covering the sensing device, and the block is disposed between the cover and the sensing device. In the present invention, the block is mounted on the cover, there is no need to etch the cover to form a protruding portion, and thus the method of the present invention is simple and has low cost.
摘要:
Electronic device wafer level scale packages and fabrication methods thereof. A semiconductor wafer with a plurality of electronic devices formed thereon is provided. The semiconductor wafer is bonded with a supporting substrate. The back of the semiconductor substrate is thinned. A first trench is formed by etching the semiconductor exposing an inter-layered dielectric layer. An insulating layer is conformably deposited on the back of the semiconductor substrate. The insulating layer on the bottom of the first trench is removed to create a second trench. The insulating layer and the ILD layer are sequentially removed exposing part of a pair of contact pads. A conductive layer is conformably formed on the back of the semiconductor. After the conductive layer is patterned, the conductive layer and the contact pads construct an S-shaped connection. Next, an exterior connection and terminal contact pads are subsequently formed.
摘要:
A printed circuit board includes a first layout layer, a second layout layer, a copper foil layer, a first via and a second via. The first layout layer has a first signal line and a second signal line, each of which has a curved first portion. The second layout layer has a third signal line and a fourth signal line, each of which also has a curved first portion. The curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line are coupled to the first via and the second via. In this case, the curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line cooperatively generate spiral inductance characteristic.
摘要:
An enclosure includes a plate. The plate defines a number of through holes. A hollow shield extends from the edges bounding each through hole. A top side of the shield opposite to the plate is smaller than a bottom side of the shield which is connected to the edges of the through hole. The enclosure can better shield electromagnetic interference (EMI) from the electronic device.