Abstract:
A method to operate a multi-cylinder direct-injection engine in one of a controlled auto-ignition and a spark-ignition combustion mode is described. Engine operation and an operator torque request are monitored. Fuel delivery to a portion of the cylinders is selectively deactivated and torque output from non-deactivated cylinders is selectively increased to achieve the operator torque request when the monitored engine operation is above a predetermined threshold. An engine operating point at which an engine load demand exceeds an operating capability of the engine in a stoichiometric HCCI mode is identified. The engine is selectively operated in an unthrottled spark-ignition mode with at least one cylinder unfueled and torque output from the remaining cylinders is selectively increased.
Abstract:
A method to operate a multi-cylinder direct-injection engine in one of a controlled auto-ignition and a spark-ignition combustion mode is described. Engine operation and an operator torque request are monitored. Fuel delivery to a portion of the cylinders is selectively deactivated and torque output from non-deactivated cylinders is selectively increased to achieve the operator torque request when the monitored engine operation is above a predetermined threshold. An engine operating point at which an engine load demand exceeds an operating capability of the engine in a stoichiometric HCCI mode is identified. The engine is selectively operated in an unthrottled spark-ignition mode with at least one cylinder unfueled and torque output from the remaining cylinders is selectively increased.
Abstract:
An engine control system and method maintains an optimum exhaust fuel to air ratio in an internal combustion engine. A secondary air injection (SAI) pressure is measured in an SAI system. The SAI pressure measurement is converted into an SAI flow value. A fuel compensation value is obtained based on the SAI flow value. Fuel delivery is compensated to the engine based on the fuel compensation value. In a second embodiment, the fuel compensation value is obtained based on the SAI pressure measurement. Fuel delivery is compensated to the engine based on the fuel compensation value. In a third embodiment, a primary flow value is calculated at an air intake of the engine. A fuel compensation value is calculated based on the SAI flow and primary flow values. Fuel delivery to the engine is compensated based on the fuel compensation value.
Abstract:
Part load operating point for a controlled auto-ignition four-stroke internal combustion engine is reduced without compromising combustion stability through load dependent valve controls and fueling strategies. Optimal fuel economy is achieved by employing negative valve overlap to trap and re-compress combusted gases below a predetermined engine load and employing exhaust gas re-breathing above the predetermined engine load. Split-injection fuel controls are implemented during low and intermediate part load operation whereas a single-injection fuel control is implemented during high part load operation. Split-injections are characterized by lean fuel/air ratios and single-injections are characterized by either lean or stoichiometric fuel/air ratios. Controlled autoignition is thereby enabled through an extended range of engine loads while maintaining acceptable combustion stability and emissions at optimal fuel economy.
Abstract:
A method to control combustion in an HCCI engine, to mitigate effects of combustion chamber deposits is detailed. The method comprises applying a specific surface coating to a combustion chamber surface. The surface coating has thermal properties substantially similar to the combustion chamber deposits. The thermal properties preferably include a) thermal conductivity, b) heat capacity, and c) thermal diffusivity. Applying a surface coating results in a reduction of combustion variability due to variation in combustion chamber deposits, and an improvement on combustion stability at low loads due to reduced heat loss. A preferred thermally insulating surface coating includes thermal parameters of a heat capacity in a range of 0.03×106 J/m3-K to 2.0×106 J/m3-K; a thermal conductivity in a range of 0.25 W/m-K to 2.5 W/m-K; and, a thermal diffusivity in a range of 1×10−7 m2/s to 8×10−6 m2/s.
Abstract translation:详细描述了一种控制HCCI发动机燃烧的方法,以减轻燃烧室沉积物的影响。 该方法包括将特定的表面涂层施加到燃烧室表面。 表面涂层具有与燃烧室沉积物基本相似的热性质。 热性质优选包括a)热导率,b)热容量,和c)热扩散率。 施加表面涂层导致由于燃烧室沉积物的变化而导致的燃烧变异性的降低,以及由于热损失减少而在低负载下的燃烧稳定性的改善。 优选的绝热表面涂层包括在0.03×10 6 J / m 3 -K至2.0×10 6 J / m 3 -K范围内的热容的热参数; 在0.25W / m-K至2.5W / m-K的范围内的热导率; 并且在1×10 -7 m 2 / s至8×10 -6 m 2 / s的范围内的热扩散率。
Abstract:
A method is provided for control of transition between combustion modes of a direct-injection engine operable in a homogeneous charge compression ignition (HCCI) mode at lower loads and a spark ignition flame propagation (SI) mode at higher loads. The engine includes a variable valve actuation system including two-step high and low lift valve actuation and separate cam phasing for both intake and exhaust valves. The method includes operating the engine at steady state, with fuel-air-exhaust gas mixtures at predetermined conditions, for each speed and load, and controlling the engine during mode changes between the HCCI mode and the SI mode by switching the exhaust and intake valves between low lift for HCCI operation and high lift for SI operation. High load may be an SI throttled mode with an intermediate unthrottled mode (SI/NTLC} in which transition between HCCI and SI/NTLC modes requires switching only the exhaust valve lift and transition between SI/NTLC and SI throttled modes requires switching only the intake valve lift, with predetermined phase adjustments in the valve timing phasing.
Abstract:
A method is provided for control of a direct-injection engine operated with controlled auto-ignition (HCCI) during load transient operations between modes of lean combustion low load (HCCI/Lean) and stiochiometric combustion medium load (HCCI/Stoich.). The method includes 1) operating the engine at steady state, within a homogeneous charge compression-ignition (HCCI) load range, with fuel-air-exhaust gas mixtures at predetermined conditions, for each speed and load, and controlling the engine during changes of operating mode between one to another of the HCCI/Stoich. medium load mode and the HCCI/Lean lower load mode by synchronizing change rates of predetermined controlled inputs to the current engine fueling change rate.
Abstract:
The present invention relates to methods for robust controlled auto-ignition and spark ignited combustion controls in gasoline direct-injection engines, including transients, using either exhaust re-breathing or a combination of exhaust re-compression and re-breathing valve strategy. These methods are capable of enabling engine operation with either lean of stoichiometric or stoichiometric air/fuel ratio for oxides of nitrogen (NOx) control, with varying exhaust gas recirculation (EGR) rates and throttle valve positions for knock control, and with a combination of homogeneous charge compression ignition (HCCI) and spark ignition (SI) combustion modes to optimize fuel economy over a wide range of engine operating conditions.
Abstract:
A method and apparatus for controlling engine operation to compensate for effects of combustion chamber deposits (CCDs) on combustion in a controlled auto-ignition engine is presented. Control methodologies comprise operation of variable valve actuation, fuel injection, spark timing, and intake air and coolant temperature to dynamically compensate for the effect of CCDs. A sensitivity to core gas temperature and chamber wall thermal conditions is shown, which is correlatable to in-cylinder CCD formation. Intake charge or coolant temperature control can be used to compensate for CCD effects. An engine control scheme relies upon a parametric input that quantifies instantaneous CCD formation in the combustion chamber. The result is further applicable to control pre-ignition in a conventional spark-ignition engine.
Abstract:
A method is disclosed for controlling the air-fuel ratio in a four-stroke gasoline direct-injection controlled auto-ignition combustion. The engine is operated with two sequential pairs of expansion and contraction strokes during two revolutions of the engine crank, the two revolutions defining a combustion cycle. A system is employed for variably actuating the intake and exhaust valves and adjusting the flow of air and burned gases entering the combustion chamber. Adjusting the flow affects the resulting air-fuel ratio in the combustion chamber. The valve actuating system is employable to operate the intake and exhaust valves with an exhaust re-compression or an exhaust re-breathing valve strategy. Either valve strategy affects the air-fuel ratio in the cylinder and causes a proportion of burned gases from previous combustion cycles to be retained in the cylinder to provide the necessary conditions for auto-ignition of the air-fuel mixture.