Abstract:
A signal transmission board includes a substrate, a conductive via, a cavity and a connecting hole. The substrate has a first external surface and a second external surface. The conductive via penetrating through the substrate has a first end and a second end. The first end is disposed on the first external surface, and the second end is disposed on the second external surface. The cavity is disposed in the substrate and penetrated by the conductive via. The connecting hole disposed on the substrate has a third end and a fourth end. The third end is disposed on the first external surface, and the fourth end communicates with the cavity.
Abstract:
In an embodiment, a light emitting device comprises a light emitting diode chip and a spherical extending electrode. The light emitting diode chip includes a semiconductor epitaxial structure, a first electrode and a second electrode. The first electrode and the second electrode are disposed on two opposite sides of the semiconductor epitaxial structure, respectively. The first electrode is disposed between the semiconductor epitaxial structure and the spherical extending electrode, and the spherical extending electrode is electrically connected to the semiconductor epitaxial structure electrically through the first electrode. The volume of the spherical extending electrode is greater than that of the light emitting diode chip.
Abstract:
A power module for high/low voltage insulation is provided. The power module includes a first substrate, a second substrate and an insulating substrate. The first substrate includes a first control circuit and a light source, wherein the first control circuit controls the light source to emit light. The second substrate includes a light-sensing part, a second control circuit and a power device. The light-sensing part receives the light of the light source of the first substrate to send a sensing information. The second control circuit correspondingly drives the power device in accordance with the sensing information. The insulating substrate is disposed between the first substrate and second substrate.
Abstract:
A solder and a solder joint structure formed by the solder are provided. The solder includes a zinc-based material, a copper film, and a noble metal film. The copper film completely covers the surface of the zinc-based material. The noble metal film completely covers the copper film. The solder joint structure includes a zinc-based material and an intermetallic layer. The intermetallic layer consists of zinc and noble metal and completely covers the surface of the zinc-based material.
Abstract:
A first back surface of a first chip faces toward a carrier. A first active surface of the first chip has first pads and a first insulting layer thereon. A second chip is disposed on the first chip and electrically connected to the carrier. A second active surface of the second chip faces toward the first active surface. The second active surface has second pads and a second insulting layer thereon. Bumps connect the first and second pads. First and second daisy chain circuits are respectively disposed on the first and second insulting layers. Hetero thermoelectric device pairs are disposed between the first and second chips and connected in series by the first and second daisy chain circuits, and constitute a circuit with an external device. First and second heat sinks are respectively disposed on a second surface of the carrier and a second back surface of the second chip.
Abstract:
A power module including a main housing, a power element, and at least one assembling component is provided. The main housing has at least one side wall and at least two ribs extending from the side wall. The power element is disposed in the main housing and is closely pressed against a heat dissipation structure by the side wall. The assembling component includes a main section and two bending sections. The main section is located between the two ribs and includes a central portion, at least one movable component, and a peripheral portion. The central portion has a fastening portion, the peripheral portion surrounds the central portion, and the movable component is connected between the central portion and the peripheral portion. The two bending sections are respectively connected to two opposite sides of the peripheral portion and are respectively embedded in the two ribs.
Abstract:
An electronic package structure is provided. The electronic packaging structure includes a substrate, a conductive layer disposed on the substrate, an intermetallic compound disposed on the conductive layer, a stress buffering material disposed on the substrate and adjacent to the conductive layer, and an electronic device disposed on the conductive layer and the stress buffering material. The intermetallic compound is disposed between the electronic device and the conductive layer, between the electronic device and the stress buffering material, between the substrate and the stress buffering material, and between the conductive layer and the stress buffering material. A maximum thickness of the intermetallic compound disposed between the electronic device and the stress buffering material, between the substrate and the stress buffering material, and between the conductive layer and the stress buffering material is greater than the thickness of the intermetallic compound disposed between the electronic device and the conductive layer.
Abstract:
A power module including a main housing, a power element, and at least one assembling component is provided. The main housing has at least one side wall and at least two ribs extending from the side wall. The power element is disposed in the main housing and is closely pressed against a heat dissipation structure by the side wall. The assembling component includes a main section and two bending sections. The main section is located between the two ribs and includes a central portion, at least one movable component, and a peripheral portion. The central portion has a fastening portion, the peripheral portion surrounds the central portion, and the movable component is connected between the central portion and the peripheral portion. The two bending sections are respectively connected to two opposite sides of the peripheral portion and are respectively embedded in the two ribs.
Abstract:
A chip scale package structure is provided. The chip scale package structure includes an image sensor chip and a chip. The image sensor chip includes a first redistribution layer including a conductive wire and a conductive pad formed on the conductive wire, wherein the conductive pad is exposed from the surface of the first redistribution layer. The chip includes a second redistribution layer including a conductive wire and a conductive pad formed on the conductive wire, wherein the conductive pad is exposed from the surface of the second redistribution layer. The area of the chip is smaller than that of the image sensor chip. The second redistribution layer of the chip bonds to the first redistribution layer of the image sensor chip.
Abstract:
A semiconductor device includes a substrate, a channel layer, a first electrode layer, a second electrode layer, and a gate structure. The substrate includes a first gallium oxide layer. The channel layer is disposed on the substrate, where the channel layer is a second gallium oxide layer. The first electrode layer and the second electrode layer are disposed on the channel layer. The gate structure is disposed on the channel layer between the first electrode layer and the second electrode layer. The gate structure is on the channel layer or the gate structure has a bottom portion extending into the channel layer.