摘要:
In one general aspect, a power device includes an active region having a plurality of pillars of a first conductivity type alternately arranged with a plurality of pillars of a second conductivity type where the plurality of pillars of the second conductivity type in the active region each have substantially the same width. The power device includes a termination region surrounding at least a portion of the active region and having a plurality of pillars of the first conductivity type alternately arranged with a plurality of pillars of the second conductivity type where the plurality of pillars of the second conductivity type in the active region each have substantially the same width and are smaller than each width of the pillars of the second conductivity type in the termination region. The power device includes a transition region disposed between the active region and the termination region.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
This document discusses, among other things, a semiconductor device including a first metal layer coupled to a source region and a second metal layer coupled to a gate structure, wherein at least a portion of the first and second metal layers overlap vertically.
摘要:
A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region. The active trench, which includes sidewalls and bottom lined with dielectric material, is substantially filled with a first conductive layer and a second conductive layer. The second conductive layer forms a gate electrode and is disposed above the first conductive layer and is separated from the first conductive layer by an inter-electrode dielectric material. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trench and a charge control trench that extends deeper into the drift region than the active trench and is substantially filled with material to allow for vertical charge control in the drift region. The charge control trench can be lined with a layer of dielectric material and substantially filled with conductive material. The active trench can include a second shield electrode made of conductive material disposed below the first shield electrode. The first conductive layer inside the active trench can form a secondary gate electrode that is configured to be electrically biased to a desired potential. The semiconductor device can also include a Schottky structure formed between the charge control trench and a second adjacent charge control trench.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
摘要:
This document discusses, among other things, a semiconductor device including a first metal layer coupled to a source region and a second metal layer coupled to a gate structure, wherein at least a portion of the first and second metal layers overlap vertically.
摘要:
A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film by a sub-atmospheric chemical vapor deposition process that fills the trench and covers a top surface of the substrate. The method also includes etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench.
摘要:
A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type. Each of the plurality of pillars of second conductivity type further includes a plurality of implant regions of the second conductivity type arranged on top of one another along the depth of pillars of second conductivity type, and a trench portion filled with semiconductor material of the second conductivity type directly above the plurality of implant regions of second conductivity type.