Abstract:
Some features pertain to a package that includes a redistribution portion, a first die coupled to the redistribution portion, a core layer coupled to the redistribution portion, and an encapsulation layer encapsulating the first die and the core layer. The redistribution portion includes a first dielectric layer. The core layer has a higher Young's Modulus than the encapsulation layer. In some implementations, the core layer includes a glass fiber (e.g., core layer is a glass reinforced dielectric layer). In some implementations, the core layer has a Young's Modulus of about at least 15 gigapascals (Gpa). In some implementations, the first die includes a front side and a back side, where the front side of the first die is coupled to the redistribution portion. In some implementations, the first dielectric layer is a photo imageable dielectric (PID) layer.
Abstract:
A semiconductor package may include a lower substrate with one or more electronic components attached to a surface thereof and an upper substrate with one or more cavities wherein the upper substrate is attached to the lower substrate at a plurality of connection points with the one or more electronic components fitting within a single cavity or a separate cavity for each component that allow the overall form factor of the semiconductor package to remain smaller. The plurality of connection points provide a mechanical and electrical connection between the upper and lower substrate and may include solder joints there between as well as conductive filler particles that create an adhesive reinforcement matrix when compressed for assembly.
Abstract:
Some features pertain to an integrated device that includes a first substrate, a first solder resist layer coupled to the first substrate, a second solder resist layer coupled to the first solder resist layer, and an opening in the first and second solder resist layers, the opening comprising a sidewall completely covered with the second solder resist layer, where a sidewall of the second solder resist layer covers a sidewall of the first solder resist layer. In some implementations, the opening is at least partially filled with an electrically conductive material. The electrically conductive material includes one of solder and/or an interconnect. The integrated device includes a first interconnect coupled to the electrically conductive material. The first interconnect is one of at least a solder, and/or an interconnect ball. In some implementations, the integrated device includes a pad coupled to the substrate, and a first interconnect coupled to the pad.
Abstract:
A package comprising a substrate, a first antenna device, and an integrated device. The substrate comprising a first surface and a second surface, where the substrate comprises a plurality of interconnects. The first antenna device is coupled to the first surface of the substrate, through a first plurality of solder interconnects. The integrated device is coupled to the second surface of the substrate. The package may include an encapsulation layer located over the second surface of the substrate, where the encapsulation layer encapsulates the integrated device. The package may include a shield formed over a surface of the encapsulation layer, where the shield includes an electromagnetic interference (EMI) shield.
Abstract:
An integrated circuit (IC) package that is to be incorporated into a computing device may include a metallization structure with circuits and/or other elements such as capacitors or inductors thereon. Pads for input/output (I/O) (or other) purposes may also be present at different locations on the metallization structure. Exemplary aspects of the present disclosure allow mold material to be placed over the circuits and/or other elements in readily-customizable configurations so as to allow placement of the I/O pads in any desired location on the metallization structure. Specifically, before the mold material is applied to the metallization structure, a mask material such as tape may be applied to portions of the metallization structure that contain I/O pads or otherwise have reasons to not have mold material thereon. The mold material is applied, and the mask material is removed, taking unwanted mold material with the mask material.
Abstract:
Packages are configured to include an electromagnetic interference (EMI) shield. According to one example, a package includes a substrate, an electrical component, and an EMI shield. The substrate includes a first surface and a second surface. The electrical component may be coupled to the first side of the substrate. The EMI shield is formed with at least one passive device. The at least one passive device is coupled to the first surface of the substrate. The at least one passive device is located laterally to the at least one electrical component, and extends along at least a portion of the electrical component. Other aspects, embodiments, and features are also included.
Abstract:
Certain aspects of the present disclosure provide apparatus and techniques for partially molding packages for integrated circuits. A packaged assembly for integrated circuits includes: a substrate having at least one mold barrier between a first region on a first surface of the substrate and a second region on the first surface; a die attached to the substrate; one or more components attached to the substrate in the first region; and a first encapsulant over the one or more components in the first region, wherein the at least one mold barrier is configured to block a portion of the first encapsulant from moving from the first region of the substrate to the second region of the substrate during an application of the first encapsulant.
Abstract:
Radio-frequency (RF) integrated circuit (IC) (RFIC) packages employing a substrate sidewall partial shield for electro-magnetic interference (EMI) shielding. A RFIC package includes an IC die layer that includes a RFIC die(s) mounted on a substrate that includes substrate metallization layers, a substrate core, and substrate antenna layers. The RFIC package includes an EMI shield surrounding the IC die layer and extending down shared sidewalls of the IC die layer and the substrate. The EMI shield extends down the sidewalls of the IC die layer and substrate metallization layers of the substrate to at least the interface between the substrate metallization layers and the substrate core, and without extending adjacent to the sidewall of the substrate antenna layers. In this manner, antenna performance of the antenna module may not be degraded, because extending the EMI shield down sidewalls of the substrate antenna layers can create a resonance cavity in the substrate.
Abstract:
An integrated circuit (IC) package that is to be incorporated into a computing device may include a metallization structure with circuits and/or other elements such as capacitors or inductors thereon. Pads for input/output (I/O) (or other) purposes may also be present at different locations on the metallization structure. Exemplary aspects of the present disclosure allow mold material to be placed over the circuits and/or other elements in readily-customizable configurations so as to allow placement of the I/O pads in any desired location on the metallization structure. Specifically, before the mold material is applied to the metallization structure, a mask material such as tape may be applied to portions of the metallization structure that contain I/O pads or otherwise have reasons to not have mold material thereon. The mold material is applied, and the mask material is removed, taking unwanted mold material with the mask material.
Abstract:
An integrated device that includes a printed circuit board (PCB) and a package on package (PoP) device coupled to the printed circuit board (PCB). The package on package (PoP) device includes a first package that includes a first electronic package component (e.g., first die) and a second package coupled to the first package. The integrated device includes a first encapsulation layer formed between the first package and the second package. The integrated device includes a second encapsulation layer that at least partially encapsulates the package on package (PoP) device. The integrated device is configured to provide cellular functionality, wireless fidelity functionality and Bluetooth functionality. In some implementations, the first encapsulation layer is separate from the second encapsulation layer. In some implementations, the second encapsulation layer includes the first encapsulation layer. The package on package (PoP) device includes a gap controller located between the first package and the second package.