Abstract:
Semiconductor devices with redistribution pads are disclosed. The semiconductor device includes a plurality of electric pads provided on a semiconductor substrate, and a plurality of redistribution pads electrically connected to the electric pads and an outer terminal. The plurality of redistribution pads includes a plurality of first redistribution pads constituting a transmission path for a first electrical signal and at least one second redistribution pad constituting a transmission path for a second electrical signal different from the first electrical signal. The first redistribution pads are arranged on the semiconductor substrate to form at least two rows, and the at least one second redistribution pad is disposed between the at least two rows of the first redistribution pads.
Abstract:
Semiconductor devices having through-vias and methods for fabricating the same are described. The method may include forming a hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a sacrificial layer partially filling the hole, forming a through-via in the hole partially filled with the sacrificial layer, forming a via-insulating layer between the through-via and the substrate, and exposing the through-via through a bottom surface of the substrate. Forming the sacrificial layer may include forming an insulating flowable layer on the substrate, and constricting the insulating flowable layer to form a solidified flowable layer.
Abstract:
Semiconductor devices having through-vias and methods for fabricating the same are described. The method may include forming a hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a sacrificial layer partially filling the hole, forming a through-via in the hole partially filled with the sacrificial layer, forming a via-insulating layer between the through-via and the substrate, and exposing the through-via through a bottom surface of the substrate. Forming the sacrificial layer may include forming an insulating flowable layer on the substrate, and constricting the insulating flowable layer to form a solidified flowable layer.
Abstract:
A semiconductor package includes a package substrate, a plurality of stacked structures on the package substrate, each stacked structure including a plurality of core chips stacked on each other, each core chip including a memory cell array including a plurality of memory cells, a buffer chip on the package substrate, and spaced apart from the plurality of stacked structures in a horizontal direction, and a photonics package including an optical integrated circuit chip on the package substrate, an electronic integrated circuit chip on the optical integrated circuit chip, and a first molding layer surrounding side surfaces of the electronic integrated circuit chip, wherein the buffer chip is configured to control the memory cell of the core chip of each of the plurality of stacked structures.
Abstract:
A semiconductor package including: a redistribution layer including redistribution line patterns, redistribution vias connected to the redistribution line patterns, and a redistribution insulating layer surrounding the redistribution line patterns and the redistribution vias; semiconductor chips including at least one upper semiconductor chip disposed on a lowermost semiconductor chip of the semiconductor chips, wherein the at least one upper semiconductor chip is thicker than the lowermost semiconductor chip; bonding wires each having a first end and a second end, wherein the bonding wires connect the semiconductor chips to the redistribution layer, wherein the first end of each of the bonding wires is connected to a respective chip pad of the semiconductor chips and the second end of each of the bonding wires is connected to a respective one of the redistribution line patterns; and a molding member surrounding, on the redistribution layer, the semiconductor chips and the bonding wires.
Abstract:
A semiconductor package includes a first semiconductor chip including a first substrate, a plurality of first pads on the first substrate, and a plurality of through-electrodes extending through the first substrate and connected to the plurality of first pads, and a second semiconductor chip on the first semiconductor chip, the second semiconductor chip including a second substrate, and a plurality of second pads below the second substrate and in contact with the plurality of first pads. The plurality of first pads includes a first group of first pads each including a first base layer including a first recess, and a first conductive pattern layer and a first insulating pattern layer alternately disposed in the first recess, and a second group of first pads each including a second base layer including a second recess, and a second conductive pattern layer disposed in the second recess.
Abstract:
A semiconductor package includes a semiconductor chip including a contact pad on an active surface, a first insulating layer on the active surface including a first opening that exposes the contact pad, a redistribution layer connected to the contact pad and extending to an upper surface of the first insulating layer, a second insulating layer on the first insulating layer and including a second opening that exposes a contact region of the redistribution layer, a conductive post on the contact region, an encapsulation layer on the second insulating layer and surrounding the conductive post, and a conductive bump on an upper surface of the conductive post. The conductive post includes an intermetallic compound (IMC) layer in contact with the conductive bump. An upper surface of the IMC layer is lower than an upper surface of the encapsulation layer.
Abstract:
A semiconductor package is provided including a first semiconductor package including a first semiconductor chip. The first semiconductor chip includes a first surface and a second surface opposite to the first surface. A second semiconductor package is disposed on the first semiconductor package. The second semiconductor package includes a second redistribution layer including a redistribution line. A second semiconductor chip is disposed on the second redistribution layer. A thermal pillar is disposed on the second redistribution layer. A heat radiator is disposed on the second semiconductor package and connected to the thermal pillar. The redistribution line is connected to the first semiconductor chip.
Abstract:
A semiconductor device including a substrate, an insulating layer on the substrate and including a trench, at least one via structure penetrating the substrate and protruding above a bottom surface of the trench, and a conductive structure surrounding the at least one via structure in the trench may be provided.
Abstract:
The method of fabricating a semiconductor package including preparing a semiconductor wafer having a first side and a second side, the second side facing the first side, and the semiconductor wafer including a through via exposed through the first side, forming trenches at cutting areas between chip areas and at edge areas of the semiconductor wafer on the first side, stacking a semiconductor chip on the through via, forming an under fill resin layer to fill a gap between the semiconductor chip and the semiconductor wafer and to cover a side of the semiconductor chip, and forming a molding layer to cover at least a portion of the under fill resin layer and to fill at least a portion of the respective trenches may be provided.