Abstract:
A film forming method of forming a metallic titanium film on a substrate, includes: a process of forming the metallic titanium film by an atomic layer deposition (plasma enhanced ALD) method that alternately performs an adsorption operation of adsorbing a raw material gas onto a surface of the substrate by supplying the raw material gas into a processing container in which the substrate is accommodated, and a reaction operation of supplying a reactive gas into the processing container to plasmarize the reactive gas and causing the plasmarized reactive gas to react with the raw material gas adsorbed onto the surface of the substrate, wherein, in the reaction operation, the reactive gas is plasmarized with radio frequency power having a frequency of 38 MHz or more and 60 MHz or less.
Abstract:
There is provided a plasma processing device comprising: a chamber; an upper electrode; a showerhead provided below the upper electrode, which divides an internal space of the chamber into a first space between the upper electrode and the showerhead and a second space below the showerhead, and provides a plurality of introduction ports for introducing a gas into the second space and a plurality of openings penetrating the showerhead so that the first space and the second space are in communication with each other; a substrate support portion configured to support a substrate in the second space; an ion trap provided between the upper electrode and the showerhead, wherein the ion trap provides a plurality of through holes arranged not to align with the plurality of openings of the showerhead; a first gas supply portion configured to supply a gas to a region in the first space between the upper electrode and the ion trap; a second gas supply portion configured to supply the showerhead with a gas to be introduced from the plurality of introduction ports into the second space; a power source configured to produce a power for generating plasma, and connected to the upper electrode; and a switch configured to switchably connect the showerhead to one of a ground and the upper electrode.
Abstract:
A substrate processing apparatus of the present disclosure includes a processing container capable of being vacuum-exhausted, a lower electrode, and an upper electrode. A target substrate can be placed on the lower electrode. The upper electrode is disposed in the processing container so as to face the lower electrode. A substrate processing method of the present disclosure includes performing a first process on the target substrate using an AC voltage without using a DC pulse voltage, and performing a second process on the target substrate using the DC pulse voltage.
Abstract:
A film forming apparatus includes a vacuum-evacuable processing chamber, a lower electrode for mounting thereon a target substrate, an upper electrode disposed to face the lower electrode, a gas supply unit, a voltage application unit and a switching unit. The gas supply unit supplies a film forming source gas to be formed into plasma to a processing space between the upper and the lower electrode. The voltage application unit applies to the upper electrode a voltage outputted from at least one of a high frequency power supply and a DC power supply included therein. The switching unit selectively switches the voltage to be applied to the upper electrode among a high frequency voltage outputted from the high frequency power supply, a DC voltage outputted from the DC power supply, and a superimposed voltage in which the DC voltage is superimposed with the high frequency voltage.
Abstract:
Disclosed is a plasma processing apparatus including a processing chamber configured to perform a processing on a wafer by plasma, a VF power supply configured to change a frequency of a high frequency power to be supplied into the chamber, a susceptor configured to mount the wafer thereon, and a focus ring disposed to surround the wafer. A first route, which passes through the plasma starting from the VF power supply, passes through the susceptor, the wafer and the plasma, and a second route, which passes through the plasma starting from the VF power supply, passes through the susceptor, the focus ring and the plasma. The reflection minimum frequency of the first route is different from the reflection minimum frequency of the second route, and the frequency range changeable by the VF power supply includes the reflection minimum frequencies of the first and second routes.
Abstract:
A wear amount measuring apparatus includes a light source, a light transmission unit, a first and a second irradiation unit, a spectroscope and an analysis unit. The light transmission unit splits a low-coherence light from the light source into a first and a second low-coherence light. The first and the second irradiation units irradiate the first and the second low-coherence light to the component to receive reflected lights from the component. The light transmission unit transmits the reflected lights received by the first irradiation unit and the second irradiation unit to the spectroscope. The spectroscope configured to detect intensity distribution of the reflected lights from the first and the second irradiation unit. The analysis unit calculates a thickness difference between a thickness of the component at the first measuring point and that at the second measuring point by performing Fourier transform on the intensity distribution.
Abstract:
A plasma processing apparatus comprising: a chamber; an upper electrode; a shower head having openings, an inner space of the chamber being divided into a first space and a second space; a shielding part including first and second shielding plates arranged in parallel between the upper electrode and the shower head, the shielding part having through-holes aligned with the openings; a gas supply device configured to supply a gas; a radio frequency (RF) power supply configured to output an RF voltage; a voltage applying part configured to select ions or radicals passing through the through-holes in the plasma by applying a control voltage to the shielding part; and a controller configured to control the voltage applying part by independently applying a control voltage to each of the first and second shield plates depending on control from the controller.
Abstract:
A film forming apparatus includes a vacuum-evacuable processing chamber, a lower electrode for mounting thereon a target substrate, an upper electrode disposed to face the lower electrode, a gas supply unit, a voltage application unit and a switching unit. The gas supply unit supplies a film forming source gas to be formed into plasma to a processing space between the upper and the lower electrode. The voltage application unit applies to the upper electrode a voltage outputted from at least one of a high frequency power supply and a DC power supply included therein. The switching unit selectively switches the voltage to be applied to the upper electrode among a high frequency voltage outputted from the high frequency power supply, a DC voltage outputted from the DC power supply, and a superimposed voltage in which the DC voltage is superimposed with the high frequency voltage.
Abstract:
There is provided a plasma processing device. The plasma processing device comprises: a processing chamber; a partition plate that has an insulating property, and configured to partition a space in the processing chamber into a reaction chamber in which an object to be processed is mounted and a plasma generating chamber in which plasma is generated, wherein a first electrode is provided on a surface of the partition plate on the side of the plasma generating chamber, and the partition plate has a plurality of through holes formed for supplying active species contained in the plasma generated in the plasma generating chamber to the reaction chamber; a second electrode disposed in the plasma generating chamber so as to face the first electrode; and a power supply configured to supply high-frequency power obtained by phase-controlling and superimposing high-frequency powers of a plurality of frequencies to one of the first electrode and the second electrode when the plasma is generated in the plasma generating chamber.
Abstract:
A plasma processing apparatus is provided to perform plasma processing on a substrate. The plasma processing apparatus includes a processing chamber, a substrate support disposed in the processing chamber to place thereon the substrate, a grounded lower electrode provided in the substrate support, an upper electrode disposed to face the lower electrode, a gas supply unit to supply a processing gas to a space between the upper electrode and the substrate support, and a radio frequency power supply to apply RF power to the upper electrode to generate plasma of the processing gas. The plasma processing apparatus further includes a voltage waveform shaping unit provided between the RF power supply and the upper electrode to shape a voltage waveform of the RF power supply to suppress a positive voltage of the RF voltage applied to the upper electrode.