Abstract:
A method of manufacturing an LED lamp is disclosed. The method includes admixing an uncured curable liquid resin and a phosphor, dispensing the uncured admixture on an LED chip, centrifuging the chip and the admixture to disperse the phosphor particles in the uncured resin, and curing the resin while the phosphor particles remain distributed.
Abstract:
A semiconductor photonic device and associated method are disclosed. The device includes a substrate and a buffer structure on the substrate. The buffer structure is formed of a discontinuous layer of aluminum gallium nitride and a gallium nitride layer on the aluminum gallium nitride layer having a thickness that functionally minimizes the number of defects propagated through it. At least two doped Group III nitride layers are on the buffer structure, with the layers being of opposite conductivity type from one another for providing electrons and holes that combine to generate an emission from the device when current is applied to the device.
Abstract:
A light emitting diode is disclosed. The diode includes a package support and a semiconductor chip on the package support, with the chip including an active region that emits light in the visible portion of the spectrum. Metal contacts are in electrical communication with the chip on the package. A substantially transparent encapsulant covers the chip in the package. A phosphor in the encapsulant emits a frequency in the visible spectrum different from the frequency emitted by the chip and in response to the wavelength emitted by the chip. A display element is also disclosed that combines the light emitting diode and a planar display element. The combination includes a substantially planar display element with the light emitting diode positioned on the perimeter of the display element and with the package support directing the output of the diode substantially parallel to the plane of the display element.
Abstract:
A light emitting diode is disclosed that includes a transparent substrate with an absorption coefficient less than 4 per centimeter, epitaxial layers having absorption coefficients of less than 500 per centimeter in the layers other than the active emission layers, an ohmic contact and metallization layer on at least one of the epitaxial layers, with the ohmic contact and metallization layer having a transmission of at least about 80 percent, and bond pads with reflectivity greater than at least about 70 percent.
Abstract:
Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
Abstract:
Light emitter packages, systems, and methods having improved performance are disclosed. In one aspect, a light emitter package can include a submount that can include an anode and a cathode. A light emitter chip can be disposed over the submount such that the light emitter chip is mounted over at least a portion of the cathode and wirebonded to at least a portion of the anode.
Abstract:
A light emitting diode is disclosed. The diode includes a package support and a semiconductor chip on the package support, with the chip including an active region that emits light in the visible portion of the spectrum. Metal contacts are in electrical communication with the chip on the package. A substantially transparent encapsulant covers the chip in the package. A phosphor in the encapsulant emits a frequency in the visible spectrum different from the frequency emitted by the chip and in response to the wavelength emitted by the chip. A display element is also disclosed that combines the light emitting diode and a planar display element. The combination includes a substantially planar display element with the light emitting diode positioned on the perimeter of the display element and with the package support directing the output of the diode substantially parallel to the plane of the display element.
Abstract:
A method of forming electronic device precursors and devices with reduced cracking in relevant layers is disclosed along with resulting structures. The method includes the steps of growing a transition layer of undoped Group III nitride on a substrate that is other than a Group III nitride, growing an active structure of Group III nitride on the undoped layer, and removing the substrate from the undoped layer.
Abstract:
A light emitting diode is disclosed. The diode includes a package support and a semiconductor chip on the package support, with the chip including an active region that emits light in the visible portion of the spectrum. Metal contacts are in electrical communication with the chip on the package. A substantially transparent encapsulant covers the chip in the package. A phosphor in the encapsulant emits a frequency in the visible spectrum different from the frequency emitted by the chip and in response to the wavelength emitted by the chip. A display element is also disclosed that combines the light emitting diode and a planar display element. The combination includes a substantially planar display element with the light emitting diode positioned on the perimeter of the display element and with the package support directing the output of the diode substantially parallel to the plane of the display element.