Abstract:
A bipolar transistor in accordance with the invention includes a polysilicon base contact (607A) which is self-aligned with a polysilicon emitter (303). The polysilicon emitter is formed from a first polysilicon layer overlying an intrinsic base region (502) in a substrate (201). An extrinsic base (504) in the substrate is in contact with the intrinsic base and is self-aligned with a spacer (406) adjacent to the emitter. The polysilicon base contact is formed from a second polysilicon layer (407) in contact with the extrinsic base and overlying the emitter. A second sidewall spacer (508) is formed on the second polysilicon layer on step caused by the emitter. A protective layer (509, 510) formed on portions of the second polysilicon layer protects the base contact when the second spacer and the underlying portion of the second polysilicon layer are removed. The separation between the polysilicon base contact and the polysilicon emitter is controlled by the thickness the second polysilicon layer and the thickness of the spacers so that the base contact is self-aligned with a fixed separation from the emitter. Layer and spacer thicknesses define separation between the emitter and the base contact and permit sub-micron active regions in the substrate.
Abstract:
A bipolar transistor in accordance with the invention includes a polysilicon base contact (607A) which is self-aligned with a polysilicon emitter (303). The polysilicon emitter is formed from a first polysilicon layer overlying an intrinsic base region (502) in a substrate (201). An extrinsic base (504) in the substrate is in contact with the intrinsic base and is self-aligned with a spacer (406) adjacent to the emitter. The polysilicon base contact is formed from a second polysilicon layer (407) in contact with the extrinsic base and overlying the emitter. A second sidewall spacer (508) is formed on the second polysilicon layer on step caused by the emitter. A protective layer (509, 510) formed on portions of the second polysilicon layer protects the base contact when the second spacer and the underlying portion of the second polysilicon layer are removed. The separation between the polysilicon base contact and the polysilicon emitter is controlled by the thickness the second polysilicon layer and the thickness of the spacers so that the base contact is self-aligned with a fixed separation from the emitter. Layer and spacer thicknesses define separation between the emitter and the base contact and permit sub-micron active regions in the substrate.
Abstract:
A truly complementary bipolar transistor structure and a combined bipolar and CMOS transistor structure are disclosed, each including a silicide layer formed upon a substrate that acts as an extrinsic base and gate. Optionally, a layer of polysilicon can be formed between the silicide layer and the substrate. An oxide layer (LTO) is formed or deposited over the silicide layer by chemical vapor deposition (CVD). Selected regions are defined and etched using a photoresist layer. Subsequent steps of implanting, etching and metalization are performed to produce transistors with reduced gate and extrinsic base resistances. Polysilicon may be used, instead of metal, as a contact in one embodiment of the invention.
Abstract:
A method for through active-silicon via integration is provided. The method comprises forming an electrical device in a handle wafer. The method also comprises forming an isolation layer over the handle wafer and the electrical device and joining an active layer to the isolation layer. Further, the method comprises forming at least one trench through the active layer and the isolation layer to expose a portion of the handle wafer and depositing an electrically conductive material in the at least one trench, the electrically conductive material providing an electrical connection to the electrical device through the active layer.
Abstract:
A voltage converter includes an output circuit having a high-side device and a low-side device which can be formed on a single die (a “PowerDie”). The high-side device can include a lateral diffused metal oxide semiconductor (LDMOS) while the low-side device can include a trench-gate vertical diffused metal oxide semiconductor (VDMOS). The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with the output circuit.
Abstract:
A power converter device comprises a substrate, a power die mounted on the substrate, and a capacitor die mounted over the power die in a stacked configuration. The capacitor die is electrically coupled to the power die. A packaging material encapsulates the power die and the capacitor die. An integrated circuit die can also be mounted to the substrate and electrically coupled to the power die to receive power signals from the power die, with the packaging material also encapsulating the integrated circuit die.
Abstract:
A Schottky diode comprising a merged guard ring and field plate defining a Schottky contact region is provided. A Schottky metal is formed over at least partially over the Schottky contact region and at least partially over the merged guard ring and field plate.
Abstract:
An inductor may include a planar ferrite core. A first group of one or more grooves is formed in a first side of the ferrite core. A second group of two or more grooves is formed in a second side of the ferrite core. The grooves in the first and second groups are oriented such that each groove in the first group overlaps with two corresponding grooves in the second group. A first plurality of vias communicates through the ferrite core between the first and second sides of the ferrite core. Each via is located where a groove in the first group overlaps with a groove in the second group. A conductive material is disposed in the first and second groups of grooves and in the vias to form an inductor coil.
Abstract:
An inductor may include a planar ferrite core. A first group of one or more grooves is formed in a first side of the ferrite core. A second group of two or more grooves is formed in a second side of the ferrite core. The grooves in the first and second groups are oriented such that each groove in the first group overlaps with two corresponding grooves in the second group. A first plurality of vias communicates through the ferrite core between the first and second sides of the ferrite core. Each via is located where a groove in the first group overlaps with a groove in the second group. A conductive material is disposed in the first and second groups of grooves and in the vias to form an inductor coil.
Abstract:
Power wafer level chip scale package (CSP) and process of manufacture are enclosed. The power wafer level chip scale package includes all source, gate and drain electrodes located on one side of the device, which is convenient for mounting to a printed circuit board (PCB) with solder paste.