Abstract:
A method is provided for forming a metal wiring layer of a semiconductor device, which is performed in an airtight space, the pressure of which is maintained below atmospheric pressure, to form a metal deposition prevention layer. An interlayer dielectric layer pattern is formed on a semiconductor substrate so as to define a hole region. A metal film is formed on the top surface of the interlayer dielectric layer pattern under a vacuum state so as to expose the side walls of the hole region. The metal layer is oxidized in the airtight space, the pressure of which is maintained below atmospheric pressure in an oxygen atmosphere, thereby forming a metal deposition prevention layer. A metal liner is selectively formed at the side walls of the hole region. A metal layer is formed inside the hole region defined by the metal liner and on the metal deposition prevention layer. The metal liner is heat-treated and reflowed.
Abstract:
A method of fabricating a capacitor for a integrated circuit device includes the steps of forming a lower capacitor electrode on an integrated circuit substrate, and forming a dielectric layer on the lower capacitor electrode opposite the integrated circuit substrate. A titanium nitride barrier layer is deposited by chemical vapor deposition on the dielectric layer opposite the integrated circuit substrate to a thickness in the range of 50 .ANG. to 500 .ANG. using TiCl.sub.4 as a source gas. The titanium nitride barrier layer is annealed, and an upper electrode is formed on the titanium nitride barrier layer opposite the integrated circuit substrate.
Abstract:
A deposition rate of a dielectric material is varied with the electrical polarity of an underlying layer to obtain excellent deposition and planarization characteristics. A conductive layer and the underlying dielectric are surface-treated to have different electrical polarities so that the dielectric is formed by using the difference of deposition rates of the dielectric material between that on the conductive layer and that on the underlying dielectric. A CVD apparatus having a DC power source connected between a susceptor and a gas injection portion thereof is provided. The deposition and planarization can be performed at low temperatures and are simplified in process.
Abstract:
A semiconductor device includes a substrate, a plurality of insulating layers vertically stacked on the substrate, a plurality of channels arranged in vertical openings formed through at least some of the plurality of insulating layers, and a plurality of portions alternatingly positioned with the plurality of insulating layers in the vertical direction. At least some of the portions are adjacent corresponding channels of the plurality of channels. Each of the portions includes a conductive barrier pattern formed on an inner wall of the portion, a filling layer pattern positioned in the portion on the conductive barrier pattern, and a gate electrode positioned in a remaining area of the portion not occupied by the conductive barrier or filling layer pattern.
Abstract:
A method of manufacturing a non-volatile memory device, can be provided by forming a gate insulating layer and a gate conductive layer on a substrate that includes active regions that are defined by device isolation regions that include a carbon-containing silicon oxide layer. The gate conductive layer and the gate insulating layer can be sequentially etched to expose the carbon-containing silicon oxide layer. The carbon-containing silicon oxide layer can be wet-etched to recess a surface of the carbon-containing silicon oxide layer to below a surface of the substrate. Then, an interlayer insulating layer can be formed between the gate insulating layer and the gate conductive layer on the carbon-containing silicon oxide layer, where an air gap can be formed between the carbon-containing silicon oxide layer and the gate insulating layer.
Abstract:
A vertical semiconductor device and a method of making a vertical semiconductor device include a first semiconductor pattern formed on a substrate and a first gate structure formed on a sidewall of the first semiconductor pattern. A second semiconductor pattern is formed on the first semiconductor pattern. A plurality of insulating interlayer patterns is formed on sidewalls of the second semiconductor pattern. The insulating interlayer patterns are spaced apart from each other to define grooves between the insulating interlayer patterns. The plurality of second gate structures is disposed in the grooves, respectively.
Abstract:
A stacked semiconductor device that is reliable by forming an insulating layer on a lower memory layer and by forming a single crystalline semiconductor in portions of the insulating layer. A method of manufacturing the stacked semiconductor device, including: providing a lower memory layer including a plurality of lower memory structures; forming an insulating layer on the lower memory layer; forming trenches by removing portions of the insulating layer; forming a preparatory semiconductor layer for filling the trenches; and forming a single crystalline semiconductor layer by phase-changing the preparatory semiconductor layer.
Abstract:
A three-dimensional semiconductor device comprises active patterns arranged two-dimensionally on a substrate, electrodes arranged three-dimensionally between the active patterns, and memory regions arranged three-dimensionally at intersecting points defined by the active patterns and the electrodes. Each of the active patterns is used as a common current path for an electrical connection to two different memory regions that are formed at the same height from the substrate.
Abstract:
Methods of forming a metal interconnects include forming an electrically insulating layer having a contact hole therein, on a substrate. A step is also performed to form an electrically conductive seed layer. The seed layer extends on a sidewall of the contact hole and on a portion of an upper surface of the electrically insulating layer extending adjacent the contact hole. The seed layer is sufficiently thick along an upper portion of the sidewall and sufficiently thin along a lower portion of the sidewall that an upper portion of the contact hole is partially constricted by the seed layer and a constricted contact hole is thereby defined. An anti-nucleation layer is deposited on a portion of the seed layer that extends outside the constricted contact hole. The constricted contact hole is used as a mask to inhibit deposition of the anti-nucleation layer adjacent a bottom of the constricted contact hole. A metal liner is then formed on a portion of the electrically conductive seed layer that defines a sidewall of the constricted contact hole. Next, a metal interconnect layer is reflowed into the constricted contact hole to thereby fill and bury the contact hole.
Abstract:
An integrated in situ cluster type wafer processing apparatus which can be used for forming metal wiring layers having a multi-layered structure and a wafer processing method using the same are provided. The wafer processing apparatus includes a transfer chamber which can be exhausted and has a plurality of gate valves, a plurality of vacuum processing chambers each of which can be connected to the transfer chamber via one of the gate valves, and a load lock chamber which can be exhausted and is connectable to a first gas feed line for feeding an oxygen-based gas into the load lock chamber. In a wafer processing method, a predetermined layer is formed on a wafer in one of the vacuum processing chambers. The predetermined layer on the wafer is oxidized in the load lock chamber or an oxygen atmosphere chamber.