OXYGEN-DOPED GROUP III METAL NITRIDE AND METHOD OF MANUFACTURE

    公开(公告)号:US20200263321A1

    公开(公告)日:2020-08-20

    申请号:US16868528

    申请日:2020-05-06

    Abstract: A gallium-containing nitride crystals are disclosed, comprising: a top surface having a crystallographic orientation within about 5 degrees of a plane selected from a (0001) +c-plane and a (000-1) −c-plane; a substantially wurtzite structure; n-type electronic properties; an impurity concentration of hydrogen greater than about 5×1017 cm−3, an impurity concentration of oxygen between about 2×1017 cm−3 and about 1×1020 cm−3, an [H]/[O] ratio of at least 0.3; an impurity concentration of at least one of Li, Na, K, Rb, Cs, Ca, F, and Cl greater than about 1×1016 cm−3, a compensation ratio between about 1.0 and about 4.0; an absorbance per unit thickness of at least 0.01 cm−1 at wavenumbers of approximately 3175 cm−1, 3164 cm−1, and 3150 cm−1, and wherein, at wavenumbers between about 3200 cm−1 and about 3400 cm−1 and between about 3075 cm−1 and about 3125 cm−1, said gallium-containing nitride crystal is essentially free of infrared absorption peaks having an absorbance per unit thickness greater than 10% of the absorbance per unit thickness at 3175 cm.

    HIGH QUALITY GROUP-III METAL NITRIDE CRYSTALS, METHODS OF MAKING, AND METHODS OF USE

    公开(公告)号:US20200224331A1

    公开(公告)日:2020-07-16

    申请号:US16736274

    申请日:2020-01-07

    Abstract: A method for forming a laterally-grown group III metal nitride crystal includes providing a substrate, the substrate including one of sapphire, silicon carbide, gallium arsenide, silicon, germanium, a silicon-germanium alloy, MgAl2O4 spinel, ZnO, ZrB2, BP, InP, AlON, ScAlMgO4, YFeZnO4, MgO, Fe2NiO4, LiGa5O8, Na2MoO4, Na2WO4, In2CdO4, lithium aluminate (LiAlO2), LiGaO2, Ca8La2(PO4)6O2, gallium nitride, or aluminum nitride (AlN), forming a pattern on the substrate, the pattern comprising growth centers having a minimum dimension between 1 micrometer and 100 micrometers, and being characterized by at least one pitch dimension between 20 micrometers and 5 millimeters, growing a group III metal nitride from the pattern of growth centers vertically and laterally, and removing the laterally-grown group III metal nitride layer from the substrate. A laterally-grown group III metal nitride layer coalesces, leaving an air gap between the laterally-grown group III metal nitride layer and the substrate or a mask thereupon.

    Apparatus for high pressure reaction

    公开(公告)号:US10174438B2

    公开(公告)日:2019-01-08

    申请号:US15474806

    申请日:2017-03-30

    Abstract: An apparatus for processing material at elevated pressure, the apparatus comprising: (a) two or more radial restraint structures defining an interior region configured to receive a processing chamber, the radial restraint structures being configured to resist an outward radial force from the interior region; (b) upper and lower crown members being disposed axially on either end of the interior region and configured to resist an outward axial force from the interior region; (c) a first axial restraint structure coupling the upper crown member and the lower crown member to provide axial restraint of the upper crown member and the lower crown; and (d) a second axial restraint structure compressing the two or more radial restraint structures to provide an axial restraint of the two or more radial restraint structures.

    ULTRAPURE MINERALIZER AND IMPROVED METHODS FOR NITRIDE CRYSTAL GROWTH

    公开(公告)号:US20240240352A1

    公开(公告)日:2024-07-18

    申请号:US18434568

    申请日:2024-02-06

    CPC classification number: C30B7/105 C30B29/403

    Abstract: A method for growth of group Ill metal nitride crystals includes providing one or more transfer vessels, a source vessel containing a condensable mineralizer composition, and a receiving vessel, chilling a metallic surface within the one or more transfer vessels, transferring a quantity of the condensable mineralizer composition to the one or more transfer vessels via a vapor phase and causing condensation of the condensable mineralizer composition within the one or more transfer vessels, measuring the quantity of the condensable mineralizer composition within the at least one transfer vessel, transferring at least a portion of the condensable mineralizer composition to the receiving vessel, and forming at least a portion of a group Ill metal nitride boule by an ammonothermal crystal growth process.

    DIRECT HEATING AND TEMPERATURE CONTROL SYSTEM FOR CRYSTAL GROWTH

    公开(公告)号:US20240158948A1

    公开(公告)日:2024-05-16

    申请号:US18388479

    申请日:2023-11-09

    CPC classification number: C30B7/10

    Abstract: Embodiments of the disclosure include a temperature control assembly for performing a crystal growth process. The temperature control assembly will include one or more temperature distribution units (TDUs) coupled to an end cap of a capsule. Each of the one or more TDUs comprise: an interior component comprising a major surface; a heating element disposed over the major surface of the interior component; a via tube comprising a central opening that is configured to accommodate lead wires, wherein the lead wires are configured to electrically connect the heating element to a power supply which is disposed on a side of the end cap that is opposite to the side on which the via tube is disposed; and a sheath layer covering the interior component, the heating element, and the via tube, wherein the sheath layer is hermetically sealed to the end cap and is configured to isolate the interior component, the heating element, and the via tube from an external environment in which the one or more TDUs are disposed during processing.

    LARGE AREA GROUP III NITRIDE CRYSTALS AND SUBSTRATES, METHODS OF MAKING, AND METHODS OF USE

    公开(公告)号:US20230340695A1

    公开(公告)日:2023-10-26

    申请号:US18338280

    申请日:2023-06-20

    CPC classification number: C30B29/605 C30B29/403 C30B29/406 C30B7/105

    Abstract: Embodiments of the present disclosure include techniques related to techniques for processing materials for manufacture of group-III metal nitride and gallium based substrates. More specifically, embodiments of the disclosure include techniques for growing large area substrates using a combination of processing techniques. Merely by way of example, the disclosure can be applied to growing crystals of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, and others for manufacture of bulk or patterned substrates. Such bulk or patterned substrates can be used for a variety of applications including optoelectronic and electronic devices, lasers, light emitting diodes, solar cells, photo electrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, and others.

Patent Agency Ranking