摘要:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
摘要:
A semiconductor package and a method for fabricating the same are provided. The method includes providing a substrate having recognition points and a heat sink having openings, and placing the heat sink on the substrate with the recognition points being exposed through the openings; using a checking system to inspect the recognition points through the openings so as to ensure that the heat sink is placed at a predetermined position on the substrate; and attaching the heat sink to the substrate via an adhesive. By the above semiconductor package and method, there is no need to form positioning holes in the substrate such that any adverse effect on the circuit layout and reliability of the semiconductor package is avoided, and any positional shifting of the heat sink relative to the substrate can be determined in a real time manner.
摘要:
A semiconductor device and the fabrication method thereof are provided. The fabrication method includes providing a substrate module plate having a plurality of substrates; attaching at least one sensor chip to each of the substrates of the substrate module plate; electrically connecting each of the sensor chips to each of the substrates through bonding wires; forming an insulating layer between each sensor chip on the substrate module plate, wherein the height of the insulating layers are not greater than the thickness of the sensor chips so as to prevent flash from the insulating layers from contaminating the sensor chips; forming an adhesive lip on the insulating layer or forming a second insulating layer followed by forming the adhesive layer, wherein the adhesive layer or the second insulating layer is higher than the highest loop-height of the bonding wires; adhering a light transmitting cover to each adhesive layer to cover the sensor chip; and cutting the substrate module plate to separate the substrates to form a plurality of semiconductor devices each integrated with at least one sensor chip. As the adhesive layers are not in contact with the bonding wires, the problems of damaging or breaking the bonding wires can be prevented in the process of adhering the light transmitting cover.
摘要:
An electronic carrier board and a package structure thereof are provided. The electronic carrier board includes a carrier, at least one pair of bond pads formed on the carrier, and a protective layer covering the carrier. The protective layer is formed with openings for exposing the bond pads. A groove is formed between the paired bond pads and has a length larger than a width of an electronic component mounted on the paired bond pads. The groove is adjacent to one of the paired bond pads and communicates with a corresponding one of the openings where this bond pad is exposed. Accordingly, a clearance between the electronic component and the electronic carrier board can be effectively filled with an insulating resin for encapsulating the electronic component, thereby preventing voids and undesirable electrical bridging between the paired bond pads from occurrence.
摘要:
An electronic carrier board and a package structure thereof are provided. The electronic carrier board includes a carrier, at least one pair of bond pads formed on the carrier, and a protective layer covering the carrier. An opening is formed in the protective layer to expose at least three sides of each of the paired bond pads. The protective layer includes at least one independent residual portion located in the opening and between the paired bond pads, such that an electronic component is mounted on the independent residual portion and electrically connected to the bond pads. A groove without a dead space is formed between the electronic component and the carrier, such that a molding compound for encapsulating the electronic component can flow through the groove to fill the opening and a space under the electronic component and encapsulate the at least three sides of each of the bond pads.
摘要:
A ground pad structure for preventing solder extrusion and a semiconductor package having the ground pad structure are disclosed, wherein the ground pad structure has the ground pads located along the circumference of its ground plane be formed in a non-solder mask defined manner. Accordingly, a good grounding quality is maintained, and the occurrence of the electrical bridging among the adjacent conductive traces can be avoided as the extrusion of the molten solder bumps from the ground pads located along the ground pad structure's circumference toward their adjacent conductive traces is effectively prevented.
摘要:
A sensor semiconductor device and a method for fabricating the same are proposed. A sensor chip is mounted on a substrate, and a dielectric layer and a circuit layer are formed on the substrate, wherein the circuit layer is electrically connected to the substrate and the sensor chip. The dielectric layer is formed with an opening for exposing a sensor region of the sensor chip. A light-penetrable lid covers the opening of the dielectric layer, such that light is able to penetrate the light-penetrable lid to reach the sensor region and activate the sensor chip. The sensor chip can be electrically connected to an external device via a plurality of solder balls implanted on a surface of the substrate not for mounting the sensor chip. Therefore, the sensor semiconductor device is fabricated in a cost-effective manner, and circuit cracking and a know good die (KGD) problem are prevented.
摘要:
A heat dissipating semiconductor package and a fabrication method thereof are provided. A semiconductor chip is mounted on a chip carrier. A heat sink is mounted on the chip, and includes an insulating core layer, a thin metallic layer formed on each of an upper surface and a lower surface of the insulating core layer and a thermal via hole formed in the insulating core layer. A molding process is performed to encapsulate the chip and the heat sink with an encapsulant to form a package unit. A singulation process is performed to peripherally cut the package unit. A part of the encapsulant above the thin metallic layer on the upper surface of the heat sink is removed, such that the thin metallic layer on the upper surface of the heat sink is exposed, and heat generated by the chip can be dissipated through the heat sink.
摘要:
A ground pad structure for preventing solder extrusion and a semiconductor package having the ground pad structure are disclosed, wherein the ground pad structure has the ground pads located along the circumference of its ground plane be formed in a non-solder mask defined manner. Accordingly, a good grounding quality is maintained, and the occurrence of the electrical bridging among the adjacent conductive traces can be avoided as the extrusion of the molten solder bumps from the ground pads located along the ground pad structure's circumference toward their adjacent conductive traces is effectively prevented.
摘要:
A method of fabricating BGA (Ball Grid Array) packages is proposed, which utilizes a specially-designed carrier to serve as an auxiliary tool to package semiconductor chips on substrates. The carrier is formed with a plurality of cavities respective for receiving a substrate and in communication with an injection gate, such that no injection gate is required on the substrate, thereby not restricting the trace routability on the substrate. Moreover, a two-piece type of mold is allowed being used to form a number of encapsulation bodies at one time, making the fabrication more productive and cost-effective. Furthermore, the proposed BGA fabrication method can be implemented without having to provide an air outlet in the substrate but allows the resulted encapsulation body to be free of voids to assure the quality of the packages. The proposed BGA fabrication method is therefore more advantageous to use than the prior art.