摘要:
A GaN based semiconductor light-emitting device is provided. The light-emitting device includes a first GaN based compound semiconductor layer of an n-conductivity type; an active layer; a second GaN based compound semiconductor layer; an underlying layer composed of a GaN based compound semiconductor, the underlying layer being disposed between the first GaN based compound semiconductor layer and the active layer; and a superlattice layer composed of a GaN based compound semiconductor doped with a p-type dopant, the superlattice layer being disposed between the active layer and the second GaN based compound semiconductor layer.
摘要:
A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
摘要:
Semiconductor light-emitting devices are provided. The semiconductor light-emitting devices include a substrate and a crystal layer selectively grown thereon at least a portion of the crystal layer is oriented along a plane that slants to or diagonally intersect a principal plane of orientation associated with the substrate thereby for example, enhancing crystal properties, preventing threading dislocations, and facilitating device miniaturization and separation during manufacturing and use thereof.
摘要:
A semiconductor light-emitting device is provided. The semiconductor light-emitting device includes: a substrate having a substrate surface oriented along a substrate surface plane; a first grown layer including a first grown layer conductivity type formed on the substrate; a masking layer formed on the first grown layer; a second grown layer of a second grown layer conductivity type formed by selective growth through an opening in the masking layer and including a crystal surface oriented along a crystal surface plane; a first cladding layer including a first cladding layer conductivity type formed along at least a portion of the crystal surface plane; an active layer; and a second cladding layer including a second cladding layer conductivity type. At least one of the first cladding layer, the active layer, and the second cladding layer cover the masking layer surrounding the opening.
摘要:
Semiconductor light-emitting devices are provided. The semiconductor light-emitting devices include a substrate and a crystal layer selectively grown thereon at least a portion of the crystal layer is oriented along a plane that slants to or diagonally intersect a principal plane of orientation associated with the substrate thereby for example, enhancing crystal properties, preventing threading dislocations, and facilitating device miniaturization and separation during manufacturing and use thereof.
摘要:
Semiconductor light-emitting devices are provided. The semiconductor light-emitting devices include a substrate and a crystal layer selectively grown thereon at least a portion of the crystal layer is oriented along a plane that slants to or diagonally intersect a principal plane of orientation associated with the substrate thereby for example, enhancing crystal properties, preventing threading dislocations, and facilitating device miniaturization and separation during manufacturing and use thereof.
摘要:
At the time of selective growth of an active layer on a substrate, crystal is previously grown in an active layer non-growth region, and the active layer is grown in an active layer selective growth region. With this configuration, a source supplied to the non-growth region is incorporated in the deposited crystal from the initial stage of growth, so that the supplied amount of the source to the active layer selective growth region is kept nearly at a constant value over the entire period of growth of the active layer, to eliminate degradation of characteristics of the device due to a variation in growth rate of the active layer. In particular, the selective growth method is effective in fabrication of a semiconductor light emitting device including a cladding layer, a guide layer, and an active layer, each of which is formed by selective growth, wherein the active layer has multiple quantum wells.
摘要:
Methods of crystal growth for semiconductor materials, such as nitride semiconductors, and methods of manufacturing semiconductor devices are provided. The method of crystal growth includes forming a number of island crystal regions during a first crystal growth phase and continuing growth of the island crystal regions during a second crystal growth phase while bonding of boundaries of the island crystal regions occurs. The second crystal growth phase can include a crystal growth rate that is higher than the crystal growth rate of the first crystal growth phase and/or a temperature that is lower than the first crystal growth phase. This can reduce the density of dislocations, thereby improving the performance and service life of a semiconductor device which is formed on a nitride semiconductor made in accordance with an embodiment of the present invention.
摘要:
A first conductive type layer having a band gap energy smaller than that of an under growth layer formed on a substrate is formed by selective growth from an opening portion formed in the under growth layer, and an active layer and a second conductive type layer are stacked on the first conductive type layer, to form a stacked structure. When such a stacked structure for forming a semiconductor device is irradiated with laser beams having an energy value between the band gap energies of the under growth layer and the first conductive type layer, abrasion occurs at a first conductive type layer side interface between the under growth layer and the first conductive type layer, so that the stacked structure is peeled from the substrate and the under growth layer and simultaneously isolated from another stacked structure for forming another semiconductor device. Since the first conductive layer has good crystallinity and is suitable for formation of an electrode thereon, an electrode can be efficiently formed on the back surface of the first conductive type layer of the peeled stacked structure.
摘要:
A first conductive type layer having a band gap energy smaller than that of an under growth layer formed on a substrate is formed by selective growth from an opening portion formed in the under growth layer, and an active layer and a second conductive type layer are stacked on the first conductive type layer, to form a stacked structure. When such a stacked structure for forming a semiconductor device is irradiated with laser beams having an energy value between the band gap energies of the under growth layer and the first conductive type layer, abrasion occurs at a first conductive type layer side interface between the under growth layer and the first conductive type layer, so that the stacked structure is peeled from the substrate and the under growth layer and simultaneously isolated from another stacked structure for forming another semiconductor device. Since the first conductive layer has good crystallinity and is suitable for formation of an electrode thereon, an electrode can be efficiently formed on the back surface of the first conductive type layer of the peeled stacked structure.