Abstract:
A multi-layer wiring board has at least one stacking block with an insulating hard substrate, a grounding layer being provided in the insulating hard substrate. A plurality of wiring layers are provided over upper and lower major surfaces of the insulating hard substrate. A plurality of throughholes are provided in the insulating hard substrate for connecting wiring layers on the top and bottom surfaces of the substrate. A base block has an insulating base board, and at least one wiring layer provided over one major surface of the insulating base board. Connections electrically and mechanically connect the at least one stacking block and the base block. The stacking block and the base block may be simultaneously manufactured in parallel with others. The stacking block and the base block may be adhered to each other by an adhesive layer. Each electrical connection between the stacking block and the base block may be achieved with bumps and pads.
Abstract:
Disclosed are a semiconductor integrated circuit device and methods for production thereof. An embodiment of the invention is a semiconductor chip that comprises fuses constituting part of redundancy circuits formed therein, the fuses being made of the same ingredients as those of a CCB bump substrate metal. The fuses are patterned simultaneously during the patterning of the CCB bump substrate metal. This involves forming the fuses using at least part of the ingredients of an electrode conductor pattern in the chip. The cutting regions of the fuses are made of only one of the metal layers constituting the substrate. The principal plane of the semiconductor chip has a fuse protective film formed over at least the cutting regions of the fuses for protection of the latter. In operation, a switch MOSFET under switching control of a redundancy signal is used to select one of two transmission paths, one carrying an address signal or a decode signal, the other carrying a reference voltage. This allows a faulty circuit to be replaced with the corresponding redundancy circuit.
Abstract:
A semiconductor device having improved heat-dissipating characteristics employs a thin insulator film made of diamond, which has excellent thermal conductivity, as an insulator film which is formed on a chip immediately below a heat-dissipating bump electrode. Since the thin diamond film has excellent insulating properties and high thermal conductivity, it is possible to improve heat-dissipating characteristics of even a high-power semiconductor device such as a multichip module. In the case of, particularly, a multichip module, the insulation between a mother chip and a child chip can also be ensured by the presence of the thin diamond film.
Abstract:
A first interconnect substrate includes a first conductor pattern. A second interconnect substrate includes a second conductor pattern. At least a portion of the second conductor pattern is formed in a region opposite the first conductor pattern. At least either the first conductor pattern or the second conductor pattern has a repeated structure. The first conductor pattern and the second conductor pattern constitute at least a portion of an electromagnetic band gap (EBG) structure.
Abstract:
The present invention provides a wiring structure that easily achieves a wiring part having a three-dimensional shape with high connection reliability and high signal quality. A wiring structure (10) according to the present invention includes one or a plurality of cables (18), a fiber (12) forming a mesh-like braiding fabric together with the cable (18), cable connectors (13, 17) formed at ends of the cable (18), and modules (14, 15) connected to the cable connectors (13, 17), the modules receiving or outputting signals through the cable.
Abstract:
A computer system includes a rack, a computer module and an interface-dedicated module to be mounted therein, and an intra-rack management module. The rack has a rear panel for power supply to and signal connection among modules, and the modules permit plug-in mounting onto the rear panel of the rack. The computer module has behind the computer a dedicated adapter which makes possible plug-in mounting of the computer onto the rack and coordinates signals between the computer and the rear panel.
Abstract:
A brushless motor according to the present invention is provided with: a tubular stator case; a stator core; and a rotor. The stator core includes a tubular yoke portion and a plurality of split cores. A plurality of dovetail grooves are formed in an inner peripheral surface of the yoke portion; each split core has a coil bobbin which has a mounting hole so as to penetrate in a radial direction, and a split teeth which is mounted into the mounting hole of the coil bobbin. The coil bobbin has a winding portion, and flange portions, and a clearance portion into which a winding starting end of the coil is strayed from the winding portion is formed on the inside of the one of the flange portions by reducing the thickness of the flange portion such that.
Abstract:
This brushless motor according to the present invention is provided with: a tubular stator case; a stator core; a rotor; a plurality of teeth which are integrally formed on an inner peripheral surface of the stator core; a coil bobbin mounted between the mutually adjacent teeth, which has a winding portion around which a coil is wound; a lead wire; and a wiring substrate which relays a connection between the lead wire and the coil, wherein: the coil bobbin has flange portions; one of the flange portions which is located on the inward in the radial direction has an enlarged member which protrudes outward from the surface of the flange portion; a pair of terminals which is connected to the wiring substrate is provided on the enlarged portion so as to be located more inward than a tip of the tooth in the radial direction.
Abstract:
A brushless motor according to the present invention is provided with: a tubular stator case; a stator core; and a rotor. The stator core includes a tubular yoke portion and a plurality of split cores. A plurality of dovetail grooves are formed in an inner peripheral surface of the yoke portion; each split core has a coil bobbin which has a mounting hole so as to penetrate in a radial direction, and a split teeth which is mounted into the mounting hole of the coil bobbin. The coil bobbin has a winding portion, and flange portions, and a clearance portion into which a winding starting end of the coil is strayed from the winding portion is formed on the inside of the one of the flange portions by reducing the thickness of the flange portion such that.
Abstract:
This brushless motor according to the present invention is provided with: a tubular stator case; a stator core; a rotore; a plurality of teeth which are integrally formed on an inner peripheral surface of the stator core; a coil bobbin mounted between the mutually adjacent teeth, which has a winding portion around which a coil is wound; a lead wire; and a wiring substrate which relays a connection between the lead wire and the coil, wherein: the coil bobbin has flange portions; one of the flange portions which is located on the inward in the radial direction has an enlarged member which protrudes outward from the surface of the flange portion; a pair of terminals which is connected to the wiring substrate is provided on the enlarged portion so as to be located more inward than a tip of the tooth in the radial direction.