Abstract:
An arrangement with self-amplifying dynamic MOS transistor storage cells has in each case a MOS selection transistor AT, whose gate is connected to a word line WL, and an MOS storage transistor ST at whose gate a capacitor C for charge storage acts. This self-amplifying storage cell can be written on and read out with only one bit line BL and one word line WL. The two transistors AT and ST are connected in series and a common drain source region DS is connected via a voltage-dependent resistor VR to the gate electrode GST of the control transistor. The advantages reside in the fact that the cell geometry can be scaled without at the same time the quantity Q of charge which can be read out on the bit line BL having to be reduced, in that the quantity Q of charge which can be read out is larger than a charge stored in the capacitor C which acts at the gate of the storage transistor ST and in that the two MOS transistors AT and ST can be produced relatively simply.
Abstract:
Fast surface states in MOS devices, such as SCCDs, are reduced by depositing a relatively thin amorphous layer containing silicon and hydrogen onto the SiO.sub.2 surface of such devices and annealing the resultant device in a non-oxidizing atmosphere for brief periods of time at a temperature in excess of the deposition temperature for the amorphous layer but below about 500.degree. C. so that free valences at the Si-SiO.sub.2 interface region are saturated with hydrogen. Surface state densities of about 4.times.10.sup.8 cm.sup.-2 eV.sup.-1 and SCCDs having .epsilon.=1.10.sup.-5 can be achieved via this process. The process is useful in producing SCCDs with low surface state densities and other MOS devices having low surface generated dark currents.
Abstract:
An integrated circuit includes a plurality of memory cells, each memory cell including a memory element and a select device; and a plurality of word lines and bit lines connected to the memory cells. The bit lines, word lines, and the memory elements are arranged above the select devices.
Abstract:
A DRAM memory cell is provided with a selection transistor, which is arranged horizontally at a semiconductor substrate surface and has a first source/drain electrode, a second source/drain electrode, a channel layer arranged between the first and the second source/drain electrode in the semiconductor substrate, and a gate electrode, which is arranged along the channel layer and is electrically insulated from the channel layer, a storage capacitor, which has a first capacitor electrode and a second capacitor electrode, insulated from the first capacitor electrode, one of the capacitor electrodes of the storage capacitor being electrically conductively connected to one of the source/drain electrodes of the selection transistor, and a semiconductor substrate electrode on the rear side, the gate electrode enclosing the channel layer at at least two opposite sides.
Abstract:
An integrated circuit including a gate electrode is disclosed. One embodiment provides a transistor including a first source/drain electrode and a second source/drain electrode. A channel is arranged between the first and the second source/drain electrode in a semiconductor substrate. A gate electrode is arranged adjacent the channel layer and is electrically insulated from the channel layer. A semiconductor substrate electrode is provided on a rear side. The gate electrode encloses the channel layer at at least two opposite sides.
Abstract:
A semiconductor body-having a pair of vertical, double-gated CMOS transistors. An insulating layer extending horizontally beneath the surface of the semiconductor body such insulating layer being disposed beneath the pair of transistors. The transistors, together with additional such transistors, are arranged to form a Synchronous Dynamic Random Access Memory (SRAM) array. The array includes a plurality of SRAM cells arranged in rows and columns, each one of the cells having a WORDLINE connected to a WORLDINE CONTACT. The WORDLINE CONTACT is common to four contiguous one of the cells. One of the cells having a plurality of electrically interconnected MOS transistors arranged to provide an SRAM circuit. Each one of the cells has a VDD CONTACT and a VSS CONTACT. One of such CONTACTs is disposed centrally within each one of the cells and the other one of the CONTACTs being common to four contiguous ones of the cells. Each one of the cells has the common one of the CONTACTs and the WORDLINE CONTACT disposed at peripheral, corner regions of the cell.
Abstract:
A semiconductor body having a pair of vertical, double-gated CMOS transistors. An insulating layer extending horizontally beneath the surface of the semiconductor body such insulating layer being disposed beneath the pair of transistors. The transistors, together with additional such transistors, are arranged to form a Synchronous Dynamic Random Access Memory (SRAM) array. The array includes a plurality of SRAM cells arranged in rows and columns, each one of the cells having a WORDLINE connected to a WORLDINE CONTACT. The WORDLINE CONTACT is common to four contiguous one of the cells. One of the cells having a plurality of electrically interconnected MOS transistors arranged to provide an SRAM circuit. Each one of the cells has a VDD CONTACT and a VSS CONTACT. One of such CONTACTs is disposed centrally within each one of the cells and the other one of the CONTACTs being common to four contiguous ones of the cells. Each one of the cells has the common one of the CONTACTs and the WORDLINE CONTACT disposed at peripheral, corner regions of the cell.
Abstract:
At least one CMOS component which is configured in a semiconductor substrate is part of the inventive circuit assembly. An insulating layer is configured on the semiconductor substrate. The insulating layer covers the CMOS component. A nanoelectronic component is configured above the insulating layer. At least one conducting structure is configured in the insulating layer and serves to link the nanoelectronic component with the CMOS component. If several nanoelectronic components are provided, they are preferably grouped to nano-circuit blocks. Each of the nano-circuit blocks is so small that the RC times of their lines do not exceed 1 ns.
Abstract:
A DRAM cell configuration includes a vertical MOS transistor per memory cell. First source/drain regions of the transistor each belong to two adjacent transistors and adjoin a bit line. Second source/drain regions of the transistor are connected to a storage node. A gate electrode of the transistor has exactly two sides adjoined by a gate oxide. The DRAM cell configuration can be produced by using three masks with a memory cell area of 4 F2. F is a minimum structure size which can be produced by using the respective technology.
Abstract:
Resistors are connected between word lines and bit lines running transversely with respect thereto. The resistors have a higher resistance than the word lines and the bit lines. The bit lines are each connected to a sense amplifier which regulates the potential on the respective bit line to a reference potential and at which an output signal can be picked off. If one of the word lines is selected and all the other word lines are put at reference potential, then the resistance of the resistor, which is assigned to an information item, can be read from the output signal.